30 II Semester B.A./B.Sc. Examination, August/September 2023 (CBCS) (2014 – 15 and Onwards) (Repeaters) MATHEMATICS – II

Time : 3 Hours

Instruction : Answer all Parts.

PART – A

- 1. Answer any five questions.
 - a) Define subgroup of a group.
 - b) Prove that in a group (G, *), $(a^{-1})^{-1} = a \forall a \in G$.
 - c) Find the angle between the radius vector and the tangent to the curve $r = ae^{\theta cot\alpha}$.
 - d) Find the length of the polar subnormal at the point $\theta = \frac{\pi}{6}$ for the curve $r = a \cos 2\theta$.
 - e) Find the asymptotes parallel to the co-ordinate axes for the curve $(x^2 + a^2)y = bx^2$.
 - f) Find the length of an arc of the cycloid

 $x = a(\theta + \sin\theta), y = a(1 - \cos\theta).$

- g) Show that the equation $(x^2 2xy + 3y^2)dx + (y^2 + 6xy x^2) dy = 0$ is exact.
- h) Solve $P^2 5P + 6 = 0$. where $P = \frac{dy}{dx}$.

Answer one full question.

- 2. a) If (G, *) is a group, then prove that $(a * b)^{-1} = b^{-1} * a^{-1}$, $\forall a, b \in G$.
 - b) Prove that $G = \{1, 5, 7, 11\}$ is a group under multiplication modulo 12.
 - c) If $f = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$ and $g = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$ be two permutations of order 3 then find fog and f⁻¹og⁻¹.

OR

Max. Marks: 70

(5×2=10)

Ore

(1×15=15)

P.T.O.

CB - 167

- 3. a) Let G be the set of all rationals and * be the binary operation on G defined by $a * b = \frac{ab}{7} \forall a, b \in G$. Then prove that (G, *) is an abelian group.
 - b) Show that cube roots of unity forms an abelian group under usual multiplication.
 - c) A non-empty subset H of a group G is a subgroup of G if and only if,
 - i) For every $a, b \in H \Rightarrow a * b \in H$.
 - ii) For every $a \in H \Rightarrow a^{-1} \in H$.

PART – C

Answer any two full questions.

- (2×15=30)
- 4. a) With usual notations prove that $tan\phi = r \frac{d\theta}{dr}$ for the curve $r = f(\theta)$.
 - b) Show that the curves $r = a(1 + \cos\theta)$, $r = b(1 \cos\theta)$ intersect orthogonally.
 - c) Find the circle of curvature of the curve $xy = a^2 at (a, a)$.

OR

- 5. a) Find the envelope of the family of straight lines $y = ax + \frac{a}{\alpha}$, where α is a parameter.
 - b) Derive the formula for radius of curvature in Cartesian form.
 - c) Find the pedal equation of the curve $r^n = a^n \cos \theta$.
- 6. a) Find all asymptotes of the curve

 $2x^3 - x^2y - 2xy^2 + y^3 - 4x^2 + 8xy - 4x + 1 = 0.$

- b) Find the surface area generated by revolving about y axis of the curve $x = y^3$ from y = 0 to y = 2.
- c) Find the position and nature of the double points of the curve

 $x^3 + x^2 + y^2 - x - 4y + 3 = 0.$ OR $(1 \times 15 = 15)$

- 7. a) Find the length of the arc of the curve $y = \log(\sec x)$ from x = 0 to $x = \pi/3$.
 - b) Find the area included between the parabola $y^2 = 4ax$ and its latus rectum.
 - c) Find the envelope of the family of lines $x \cos^3 \alpha + y \sin^3 \alpha = a$, where α is a parameter.

Answer one full question.

- 8. a) Solve : $\frac{dy}{dx}$ 2y tanx = y² tan²x.
 - b) Solve : $y = 2px + y^2p^3$.
 - c) Obtain the orthogonal trajectories of the family of parabolas $y = ax^2$, where 'a' is a parameter.

OR

9. a) Verify the condition of exactness and solve :

 $(5x^4 + 3x^2y^2 - 2xy^3)dx + (2x^3y - 3x^2y^2 - 5x^4)dy = 0.$

b) Solve for $y : y = 2px - p^2$.

1.0

c) Find the general and singular solution of

 $p^2(x^2 - a^2) - 2pxy + y^2 + a^2 = 0.$