

61

CB - 168

IV Semester B.A./B.Sc. Examination, August/September 2023 (CBCS) (2021-22 and Onwards) (Repeaters) MATHEMATICS – IV

Time: 3 Hours

SCOOLAND STATE OF STA

Max. Marks: 70

 $(5 \times 2 = 10)$

Instruction: Answer all Parts.

PART - A

- Answer any five questions :
 - a) Define a normal subgroup.
 - b) Define homomorphism of groups.
 - c) Obtain half range sine series f(x) = 2x 1 in the interval (0, 1).
 - d) Define Fourier series.
 - e) Verify Rolle's theorem for the function $f(x) = x^2 6x + 8$ in [2, 4].
 - f) Evaluate $\lim_{x\to 0} x^{X}$.
 - g) Solve y'' 6y' + 13y = 0.
 - h) Find the particular integral of $y'' 6y' + 9y = 3e^{-4x}$.

PART - B

2. Answer any two questions:

 $(2 \times 5 = 10)$

- a) Prove that a subgroup H of a group G is normal if and only if $ghg^{-1} \in H \ \forall g \in G, h \in H.$
- b) Prove that the product of any two normal subgroups of a group is again a normal subgroup of the same.
- c) State and prove fundamental theorem of Homomorphism.

PART - C

Answer any two questions :

 $(2 \times 5 = 10)$

- a) Obtain the Fourier expansion of the function $f(x) = e^x$ in $(-\pi, \pi)$.
- b) Obtain the Fourier half range cosine series for the function $f(x) = \sin x$ in $(0, \pi)$.
- c) Obtain the Fourier series of $f(x) = \frac{\pi x}{2}$ in $0 < x < 2\pi$. Hence deduce that $\frac{\pi}{4} = 1 \frac{1}{3} + \frac{1}{5} \frac{1}{7} + \dots$

PART - D

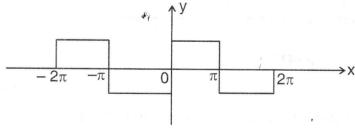
4. Answer any three questions:

 $(3 \times 5 = 15)$

- a) Discuss the continuity of the functions $f(x) = \begin{cases} 1+x & \text{for } x \le 2 \\ 5-x & \text{for } x > 2 \end{cases}$ at x = 2.
- b) State and prove Rolle's theorem.
- c) Expand tanx upto the term containing x5 using Maclaurin's expansion.
- d) Find the extreme values of $f(x, y) = 2x^2 xy + y^2 + 7x$.
- e) Obtain the Taylor's expansion of $f(x, y) = x^2y + 3y 4$ in power of (x 1) and (y + 2).

PART - E

5. Answer any three questions:


 $(3 \times 5 = 15)$

- a) Solve: $(D^2 5D + 6)y = e^{4x}$.
- b) Solve: $x^2y'' xy' + 2y = x \log x$.
- c) Solve: $y'' + 2y' + 4y = e^x \sin x$.
- d) Solve: $xy'' + (2x^2 1)y' 24x^3y = 4x^3 \sin x^2 (x > 0)$ by using the transformation $z = x^2$.
- e) Solve by the method of variation of parameter $y'' + a^2y = \sec ax$.

Answer any two questions :

 $(2 \times 5 = 10)$

- a) Sketch the graph of triangular wave and explain it.
- b) Obtain the Fourier series expansion of the following anti symmetrical square wave.

c) Sketch the graph of sawtooth wave and explain it.