CB - 479

IV Semester B.C.A. Examination, August/September 2023 (CBCS) (2015 – 16 & Onwards) (Repeaters) COMPUTER SCIENCE BCA 405 : Operation Research

38

Time : 3 Hours

Max. Marks: 100

Instruction : Answer all the Sections.

SECTION - A

 $(10 \times 2 = 20)$

- I. Answer any ten of the following.
 - 1) Define OR. Mention any 2 limitations of OR.
 - 2) What are the different phases of OR ?
 - 3) State Simplex method.
 - 4) Differentiate between degenerate solution and non-degenerate solution.
 - 5) Define slack and surplus variable.
 - 6) State transportation problem.
 - 7) What is assignment problem ?
 - 8) Define unbalanced assignment problem.
 - 9) Differentiate between predecessor and successor activities.
 - 10) What is saddle point and value of game?
 - 11) Define critical path.
 - 12) Define pay-off matrix.

SECTION - B

II. Answer any four of the following.

*

- 13) a) List and explain the various models used in OR.
 - b) A retired person wants to invest upto an amount of Rs. 30,000 in fixed income securities. His broker recommends investing in two bonds. Bond A yielding 7% and Bond B yielding 10%. After some considerations, he decides to invest atmost of Rs. 12,000 in Bond B and atleast Rs. 6,000 in Bond A. He also wants the amount invested in Bond A to be atleast equal to the amount invested in Bond B. What should the broker recommend if the investor wants to maximize his return on investment? Solve graphically.

 $(4 \times 10 = 40)$

P.T.O.

5

CB - 479

5

5

5

6

Δ

4

6

14) a) Solve the following LPP by Graphical Method : $Z = 20x_1 + 40x_2$ Subject to constraints $36x_1 + 6x_2 \ge 108$ $3x_1 + 12x_2 \ge 36$

$20x_1 + 10x_2 \ge 100$ $x_1, x_2 \ge 0.$

- b) Write a general Linear Programming Problem (LPP) in standard form. 5
- 15) Determine the initial basic feasible solution to the following transportation problem using

		estinatio	n		
	1.	2	6	7	
Source	0	4	2	12	Supply
u dae area	3	1	5	11	an sol consta
Demand	10	10	10		1273) m

a) Vogel's Approximation Method.

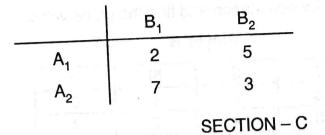
b) North-West Corner Method.

16) a) Consider the problem of assigning five jobs to five persons. The assignment costs are given as follows :

		Jobs				
		1	2	3	4	5
	Α	8	4	2	6	1
	В	0	9	5	5	4
Persons	<i>∗</i> , C	3	8	9	2	6
	D	4	3	1	0	3
	E	9 /	5	8	9	5

- b) Explain Hungarian method for solving Assignment problem.
- 17) a) Write the rules of Network Construction.

b) Draw the network for the project whose activities and their precedence relationship are as given below :


Activities immediate	Α	В	с	Е	D	611 F 1661	G	н	
Predecessor		Α	A	21 . 1	D	B, C, E	er F ie	E	G, 1

5

5

18) a) Define the term :

- i) Maximin and minimax
- ii) Game Theory.
- b) Solve the following 2×2 Game pay-off matrix. Also determine the optimal strategies and value of the game.

III. Answer any 4 of the following.

19) Solve the following LPP using Simplex method :

Maximize Z = $300x_1 + 200x_2$ Subject to constraint $5x_1 + 2x_2 \le 180$ $3x_1 + 3x_2 \le 135$ and $x_1, x_2 \ge 0$

20) Solve the Assignment Problem for maximization, given the profit matrix (Profit in Rupees)

		Machine				
		Р	Q	R	S	
	Α	51	53	54	50	
	B	47	50	48	50	
Job	C	49	50	60	61	
	D	63	64	60	60	

21) a) Solve the following transportation problem by MODI method.

		Α	B	C	D	
	1	11	20	7	8	50
Source	2	21	16	20	12	40
Source	3	8	12	18	19	70
Demand	J.	30	25	35	40	

b) Write the steps to find basic feasible solution by Matrix Minima method.

(4×10=40)

10

10

3

7

CB - 479

22) Calculate the total float, free float and independent float for the project whose activities are given below : 10

Activity	1-2	1-3	1-5	2-3	2-4	3-4	3-5	3-6	4-6	5-6
Duration (in weeks)	8	7	12	4	10	3	5	10	7	4

Player B

23) Reduce the following game by dominance and find the game value :

		l			IV
Γ	1	3	2	4	0
	11	3	4	2	4
Player A		4	2	4	0
(#1)	IV	0	4	0	8

24) a) Differentiate between PERT and CPM.

*

- b) Construct the network for the project whose activities and three time estimate of these activities are given below. Compute :
 - a) Expected duration of each activity.
 - b) Expected variance of each activity.
 - c) Expected variance of project length.

Activity	to	t _m	t _p
1-2	3	4	<i>5</i>
2 – 3	4 1 A	2	3
2 – 4	2	3	4 ·
3-5	3	4	S 5
4 - 5	1. 1.	3.	5
4 – 6	3	5	7.
5 – 7	4,	5	6
6 - 7	6.	7 and 1	8
7 – 8	2	4	6,
7-9	1	2	3
8 – 10`	4	6	8
9 – 10	3	5	Car 46 7

5

10

5