IV Semester B.C.A. Examination, August/September 2023 (CBCS) (2015-16 \& Onwards) (Repeaters)
 COMPUTER SCIENCE
 BCA 405 : Operation Research

Time : 3 Hours
Max. Marks : 100

Instruction : Answer all the Sections.

SECTION - A

I. Answer any ten of the following.

(10×2=20)

1) Define OR. Mention any 2 limitations of OR.
2) What are the different phases of OR ?
3) State Simplex method.
4) Differentiate between degenerate solution and non-degenerate solution.
5) Define slack and surplus variable.
6) State transportation problem.
7) What is assignment problem ?
8) Define unbalanced assignment problem.
9) Differentiate between predecessor and successor activities.
10) What is saddle point and value of game ?
11) Define critical path.
12) Define pay-off matrix.

SECTION - B
II. Answer any four of the following.
$(4 \times 10=40)$
13) a) List and explain the various models used in OR.
b) A retired person wants to invest upto an amount of Rs. 30,000 in fixed income securties. His broker recommends investing in two bonds: Bond A yielding 7% aṇ̀d Bond B yielding 10%. After some considerations, he decides to invest atmost of Rs. 12,000 in Bond B and atleast Rs. 6,000 in Bond A. He also wants the amount invested in Bond A to be atleast equal to the amount invested in Bond B. What should the broker recommend if the investor wants to maximize his return on investment? S'Solve graphically.
14) a) Solve the following LPP by Graphical Method :
$Z=20 x_{1}+40 x_{2}$
Subject to constraints $36 x_{1}+6 x_{2} \geq 108$

$$
\begin{aligned}
& 3 x_{1}+12 x_{2} \geq 36 \\
& 20 x_{1}+10 x_{2} \geq 100 \\
& x_{1}, x_{2} \geq 0 .
\end{aligned}
$$

b) Write a general Linear Programming Problem (LPP) in standard form.
15) Determine the initial basic feasible solution to the following transportation problem using

> Destination

Source	1	2	6	7	Supply
	0	4	2	12	
	3	1	5	11	
Demand	10	10	10		

a) Vogel's Approximation Method.
b) North-West Corner Method.
16) a) Consider the problem of assigning five jobs to five persons. The assignment costs are given as follows :

		Jobs					
		$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	
Persons	A	8	4	2	6	1	
	B	0	9	5	5	4	
	C	3	8	9	2	6	
	D	4	3	1	0	3	
	E	9	5	8	9	5	

b) Explain Hungarian method for solving Assignment problem.
17) a) Write the rules of Network Construction.
b) Draw the network for the project whose activities and their precedence relationship are as given below :

Activities immediate	A	B	C	E	D	F	G	H	I
Predecessor	-	A	A	-	D	B, C, E	F	E	G, 1

18) a) Define the term :
i) Maximin and minimax
ii) Game Theory.
b) Solve the following 2×2 Game pay-off matrix. Also determine the optimal strategies and value of the game.

	B_{1}	$\mathrm{~B}_{2}$
$\mathrm{~A}_{1}$	2	5
$\mathrm{~A}_{2}$	7	3
		SECTION-C

III. Answer any 4 of the following.
19) Solve the following LPP using Simplex method:

Maximize $Z=300 x_{1}+200 x_{2}$
Subject to constraint $5 x_{1}+2 x_{2} \leq 180$

$$
\begin{aligned}
& 3 x_{1}+3 x_{2} \leq 135 \\
& \text { and } x_{1}, x_{2} \geq 0
\end{aligned}
$$

20) Solve the Assignment Problem for maximization, given the profit matrix (Profit in Rupees)

Machine

		\mathbf{P}	\mathbf{Q}	\mathbf{R}	\mathbf{S}
Job	A	51	53	54	50
	B	47	50	48	50
	C	49	50	60	61
	D	63	64	60	60

21) a) Solve the following transportation problem by MODI method.
Machine

		A	B	C	D	50
	1	11	20	7	8	
Source	2	21	16	20	12	40
	3	8	12	18	19	70
Demand		30	25	35	40	

b) Write the steps to find basic feasible solution by Matrix Minima method.
22) Calculate the total float, free float and independent float for the project whose activities are given below :

Activity	$1-2$	$1-3$	$1-5$	$2-3$	$2-4$	$3-4$	$3-5$	$3-6$	$4-6$	$5-6$
Duration (in weeks)	8	7	12	4	10	3	5	10	7	4

23) Reduce the following game by dominance and find the game value :

Player B

Player A

	I	II	III	IV
I	3	2	4	0
II	3	4	2	4
III	4	2	4	0
IV	0	4	0	8

24) a) Differentiate between PERT and CPM.
b) Construct the network for the project whose activities and three time estimate of these activities are given below. Compute :
a) Expected duration of each activity.
b) Expected variance of each activity.
c) Expected variance of project length.

Activity	$\mathbf{t}_{\mathbf{o}}$	$\mathbf{t}_{\mathbf{m}}$	$\mathbf{t}_{\mathbf{p}}$
$1-2$	3	4	5
$2-3$	1	2	3
$2-4$	2	3	4
$3-5$	3	4	5
$4-5$	1	3	5
$4-6$	3	5	7
$5-7$	4	5	6
$6-7$	6	7	8
$7-8$	2	4	6
$7-9$	1	2	3
$8-10$	4	6	8
$9-10$	3	5	7

