

CS - 498

V Semester B.C.A. Degree Examination, March 2023 (CBCS) (F+R) (Y2K14) COMPUTER SCIENCE BCA 503 : Computer Architecture

Time : 3 Hours

Instruction : Answer all Sections.

Max. Marks: 100

I. Answer any ten questions. Each carries two marks.

 $(10 \times 2 = 20)$

- 1) Write the logic symbol, expression and truth table of EX-OR gate.
- 2) List the various types of TTL family.
- 3) What is a minterm ? Give example.
- 4) Define Multiplexer and Demultiplexer.
- 5) Convert FACE₍₁₆₎ to decimal.
- 6) List out the types of shift registers.
- 7) What is a BSA instruction ?
- 8) Mention two applications of register transfer language.
- 9) What is PSW ?
- 10) Name the two types of computer architecture based on registers.
- 11) What is Handshaking ?
- 12) What is virtual memory ?

SECTION - B

II. Answer any five questions. Each question carries five marks.

(5×5=25)

- 13) Explain Von Neumann architecture with a neat diagram.
- 14) State and prove De Morgan's theorems.
- 15) Prove that unweighted excess 3 code is a self complementing code.
- 16) Explain various input output instructions.

P.T.O.

CS - 498

- 17) Explain the design of accumulator logic with a neat diagram.
- 18) Write a note on addressing modes.
- 19) Explain DMA controller with a block diagram.
- 20) Write a note on cache memory.

*

SECTION - C

III.	Ans	wei	any three questions. Each question carries fifteen marks. (3×15=45)
	21)	a)	Simplify F(A, B, C, D) = Σ m (1, 3, 7, 11, 15) + Σ d (0, 2, 5) using K-map. 8
		b)	Explain full adder with a neat logic diagram. 7
	22)	a)	Design a octal to binary encoder. 8
2		b)	Explain the steps involved in the design of the sequential circuits. 7
	23)	Ex	plain the design of basic computer with flow chart. 15
	24)	a)	Explain data transfer instructions. 8
		b)	Differentiate between CISC and RISC. 7
	25)	a)	Explain memory hierarchy. 8
		b)	Explain the working of associative memory. 7
			SECTION - D
IV.	Ans	wer	any one question. Each question carries ten marks. (1×10=10)
	26)	a)	Explain LDA and STA instructions. 5
		b)	Explain the working of JK flip-flop. 5
	27)	a)	Explain common bus system. 5
		b)	List the applications of EEPROM. 5