22

 II Semester B.A./B.Sc. Examination, August/September 2023

 II Semester B.A./B.Sc. Examination, August/September 2023 (CBCS) (2014-15 and Onwards) (Repeaters) (CBCS) (2014-15 and Onwards) (Repeaters)

 MATHEMATICS - II

 MATHEMATICS - II}

CB-167

Time : 3 Hours
Max. Marks : 70
Instruction : Answer all Parts.

PART - A

1. Answer any five questions.
a) Define subgroup of a group.

b) Prove that in a group $(\mathrm{G}, *),\left(\mathrm{a}^{-1}\right)^{-1}=\mathrm{a} \forall \mathrm{a} \in \mathrm{G}$.
c) Find the angle between the radius vector and the tangent to the curve $r=a e^{\theta c o t \alpha}$.
d) Find the length of the polar subnormal at the point $\theta=\pi / 6$ for the curve $r=a \cos 2 \theta$.
e) Find the asymptotes parallel to the co-ordinate axes for the curve $\left(x^{2}+a^{2}\right) y=b x^{2}$
f) Find the length of an arc of the cycloid $x=a(\theta+\sin \theta), y=a(1-\cos \theta)$.
g) Show that the equation $\left(x^{2}-2 x y+3 y^{2}\right) d x+\left(y^{2}+6 x y-x^{2}\right) d y=0$ is exact.
h) Solve $P^{2}-5 P+6=0$. where $P=\frac{d y}{d x}$.
PART - B

Answer one full question.
2. a) If $(G, *)$ is a group, then prove that $(a * b)^{-1}=b^{-1} * a^{-1}, \forall a, b \in G$.
b) Prove that $\mathrm{G}=\{1,5,7,11\}$ is a group under multiplication modulo 12 .
c) If $f=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 1\end{array}\right)$ and $g=\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 1 & 2\end{array}\right)$ be two permutations of order 3 then find $f \circ g$ and $f^{-1} \circ g^{-1}$.

OR
P.T.O.
3. a) Let G be the set of all rationals and * be the binary operation on G defined by $a * b=\frac{a b}{7} \forall a, b \in G$. Then prove that $(G, *)$ is an abelian group.
b) Show that cube roots of unity forms an abelian group under usual multiplication.
c) A non-empty subset H of a group G is a subgroup of G if and only if,
i) For every $a, b \in H \Rightarrow a * b \in H$.
ii) For every $a \in H \Rightarrow a^{-1} \in H$.
PART - C

Answer any two full questions.
4. a) With usual notations prove that $\tan \phi=r \frac{d \theta}{d r}$ for the curve $r=f(\theta)$.
b) Show that the curves $r=a(1+\cos \theta), r=b(1-\cos \theta)$ intersect orthogonally.
c) Find the circle of curvature of the curve $x y=a^{2}$ at (a, a).
OR
5. a) Find the envelope of the family of straight lines $y=a x+\frac{a}{\alpha}$, where α is a
parameter.
b) Derive the formula for radius of curvature in Cartesian form.
c) Find the pedal equation of the curve $r^{n}=a^{n} \cos n \theta$.
6. a) Find all asymptotes of the curve

$$
2 x^{3}-x^{2} y-2 x y^{2}+y^{3}-4 x^{2}+8 x y-4 x+1=0 .
$$

b) Find the surface area generated by revolving about $y-a x i s$ of the curve $x=y^{3}$ from $y=0$ to $y=2$.
c) Find the position and nature of the double points of the curve

$$
x^{3}+x^{2}+y^{2}-x-4 y+3=0 .
$$

7. a) Find the length of the arc of the curve $y=\log (\sec x)$ from $x=0$ to $x=\pi / 3$.
b) Find the area included between the parabola $y^{2}=4 a x$ and its latus rectum.
c) Find the envelope of the family of lines $x \cos ^{3} \alpha+y \sin ^{3} \alpha=a$, where α is a parameter.

PART-D

Answer one full question.
8. a) Solve : $\frac{d y}{d x}-2 y \tan x=y^{2} \tan ^{2} x$.
b) Solve : $y=2 p x+y^{2} p^{3}$.
c) Obtain the orthogonal trajectories of the family of parabolas $y=a x^{2}$, where ' a ' is a parameter.

OR
9. a) Verify the condition of exactness and solve :

$$
\left(5 x^{4}+3 x^{2} y^{2}-2 x y^{3}\right) d x+\left(2 x^{3} y-3 x^{2} y^{2}-5 x^{4}\right) d y=0
$$

b) Solve for $y: y=2 p x-p^{2}$.
c) Find the general and singular solution of

$$
p^{2}\left(x^{2}-a^{2}\right)-2 p x y+y^{2}+a^{2}=0
$$

