

IV Semester B.A./B.Sc. Examination, August/September 2023 (CBCS) (2015 – 16 and Onwards) (Repeaters) Paper – IV: MATHEMATICS

Time: 3 Hours

Max. Marks: 70

Instruction : Answer all Parts.

PART - A

 $(5 \times 2 = 10)$

- Answer any five questions.
 - a) Define Homomorphism.
 b) If f: G → G' is a homomorphism, then prove that f(e) = e' where e and e'

are the identity element of G and G' respectively.

- c) Write the formula for b_n of fourier sine series expansion.
- d) Find the critical points for the function $f(x, y) = 2x^2 xy + y^2 + 7x$.
- e) Find $L^{-1} \left\{ \frac{1}{3s^2 + 16} \right\}$.
- f) Find L{e^{2t} · sin5t}
- g) Solve $(D^2 7D + 12) y = 0$.
- h) Find the particular integral of $(D^2 3D + 2) y = e^{5x}$.

PART - B

Answer one full question.

 $(1 \times 15 = 15)$

- 2. a) Prove that a subgroup H of a group G is normal subgroup if and only if $gHg^{-1} = H \ \forall g \in G$.
 - b) Prove that centre of a group G is normal subgroup of G.
 - c) If $f: G \to G'$ is a homomorphism, then prove that set $f(G) = \{f(g) \mid g \in G\}$ is a subgroup of G'.

OR

- 3. a) Prove that intersection of two normal subgroups of a group is a normal subgroup.
 - b) Let $f: G \to G'$ be a homomorphism from the group G into G' with Kernal K then f is one-one if and only if $K = \{e\}$ where e is the identity element of G.
 - c) State and prove fundamental theorem of homomorphism of group G.

PART - C

Answer two full questions.

 $(2 \times 15 = 30)$

- 4. a) Obtain the Fourier series for the function $f(x) = x^2$ over the interval $(-\pi, \pi)$.
 - b) Find the half range sine series of $f(x) = (x 1)^2$ in the interval (0, 1).
 - c) Expand $e^{x}log(1 + y)$ in powers of x and y by Taylor series upto the third degree terms.

OR

5. a) Find the Fourier series for the function

$$f(x) = \begin{cases} 1 + \frac{2x}{\pi} & \text{in } -\pi < x < 0 \\ 1 - \frac{2x}{\pi} & \text{in } 0 < x < \pi \end{cases}.$$

- b) Find the extreme values of $f(x, y) = 2x^3 xy + y^2 + 7x$.
- c) A rectangular box, open at the top, is to have a volume 32 cubic units. Find the dimensions so that total surface is minimum.
- 6. a) Find L{sin2t · sin3t}.
 - b) Find L{cosh(2t) · cos2t}.

c) Find
$$L^{-1} \left\{ \frac{5s+3}{(s-1)(s^2+2s+5)} \right\}$$
.

7. a) Find
$$L\left\{\frac{\cos at - \cos bt}{t}\right\}$$
.

b) Find
$$L^{-1} \left\{ log \left\lceil \frac{s^2 + 1}{s(s+1)} \right\rceil \right\}$$
.

c) Verify convolution theorem for the function f(t) = sint, $g(t) = e^{-t}$.

Answer one full question.

 $(1 \times 15 = 15)$

8. a) Solve:
$$(D^2 - 5D + 6)y = \sin 2x$$
.

b) Solve :
$$(D^2 - D - 6)y = x$$
.

c) Solve:
$$4x^2y'' + 4xy' - y = 4x^2$$
.

OR

9. a) Solve :
$$\frac{d^2y}{dx^2} + y = 5x^2e^x$$
.

b) Solve :
$$\frac{dx}{dt} = 3x - y$$
, $\frac{dy}{dt} = x + y$.

c) Solve:
$$\frac{d^2y}{dx^2} + y = \sec x$$
 by the method of variation of parameters.