VI Semester B.A./B.Sc. Examination, August/September 2023 (CBCS) (F+R) (2016-17 and Onwards)
 MATHEMATICS - VII

Time : 3 Hours
Max. Marks : 70
Instruction : Answer all Parts.
PART - A
Answer any five questions.

1. a) In a Vector Space V over the field F, show that $(-a) \cdot \alpha=-(a \cdot \alpha) \forall a \in F$, $\alpha \in V$.
b) Show that $W=\{(0,0, z) \mid z \in R\}$ is a subspace of $V_{3}(R)$.
c) Show that the vectors $\alpha_{1}=(1,1,0), \alpha_{2}=(1,1,0)$ and $\alpha_{3}=(1,0,0)$ are linearly independent.
d) If $T: V_{2} \rightarrow V_{2}$ defined by $T(x, y)=(x+y, y)$, then show that T is a linear transformation.
e) Write scalar factors in cylindrical co-ordinate system.
f) Solve $\frac{d x}{z x}=\frac{d y}{y z}=\frac{d z}{x y}$.
g) Form a partial differential equation by eliminating arbitrary constants from $z=(x-a)^{2}+(y-b)^{2}$.
h) Solve $p^{2}+q^{2}=1$.
PART - B

Answer two full questions.
2. a) Prove that the intersection of any two subspaces of a vector space $V(F)$ is also a subspace of V. But the union of two subspaces of vector space $V(F)$ need not to be subspace of V. Justify.
b) State and prove the necessary and sufficient condition for a non-empty subset W of a vector space $V(F)$ to be a subspace of V.

OR
3. a) Show that the vector $(3,-7,6)$ is a linear combination of the vectors $(1,-3,2)$, $(2,4,1)$ and $(1,1,1)$.
b) In a n-dimensional vector space $V(F)$, prove that
i) any $(n+1)$ elements of V are linearly dependent.
ii) No set of $(n-1)$ elements can span V.
4. a) State and prove rank-nullity theorem.
b) Show that the linear transformation $T: R^{3} \rightarrow R^{3}$ given by $T\left(e_{1}\right)=e_{1}+e_{2}$, $T\left(e_{2}\right)=e_{1}-e_{2}+e_{3}, T\left(e_{3}\right)=3 e_{1}+4 e_{3}$ is non-singular where $\left\{e_{1}, e_{2}, e_{3}\right\}$ is the standard basis of R^{3}.

OR
5. a) Find the linear transformation $T: R^{2} \rightarrow R^{2}$ such that $T(1,1)=(0,1,2)$ and $T(-1,1)=(2,1,0)$.
b) Find the matrix of linear transformation $T: V_{3}(R) \rightarrow V_{2}(R)$ defined by $T(x, y, z)=(x+y, y+z)$ relative to basis $B_{1}=\{(1,1,1),(1,0,0),(1,1,0)\}$ and $B_{2}=\left\{e_{1}, e_{2}\right\}$ of $V_{3}(R)$ and $V_{2}(R)$ respectively.
PART - C

Answer two full questions.
6. a) Verify the condition of integrability and solve $2 y z d x+z x d y-x y(1+z) d z=0$.
b) Solve $(y-z) p+(z-x) q=x-y$.
7. a) Show that cylindrical system is orthogonal curvilinear co-ordinate system.
b) Express the vector $\vec{f}=z \hat{i}-2 x \hat{j}+y \hat{k}$ in terms of spherical co-ordinates and find $f_{r}, f_{\theta}, f_{\phi}$.
8. a) Solve $\frac{d x}{m z-n y}=\frac{d y}{n x-l z}=\frac{d z}{l y-m x}$.
b) Solve $\frac{d x}{x^{2}-y z}=\frac{d y}{y^{2}-z x}=\frac{d z}{z^{2}-x y}$.
9. a) Express $\vec{f}=2 x \hat{i}-2 y^{2} \hat{j}+x z \hat{k}$ in cylindrical co-ordinates system and find $f_{\rho}, f_{\phi}, f_{z}$.
b) Express $\vec{f}=z \hat{i}-2 x \hat{j}+y \hat{k}$ in the form of spherical polar co-ordinates and find $f_{r}, f_{\theta}, f_{\phi}$.
PART - D

Answer two full questions.
10. a) Form partial differential equation by eliminating arbitrary function from $l x+m y+n z=\phi\left(x^{2}+y^{2}+z^{2}\right)$
b) Solve $x(1+y) p=y(1+x) q$.

OR
11. a) Solve $\left(D^{2}+D D^{\prime}-6\left(D^{\prime}\right)^{2}\right) z=\cos (2 x+y)$
b) Solve $z^{2}\left(p^{2} z^{2}+q^{2}\right)=1$.
12. a) Solve $p x+q y=p q$ by Charpit's method.
b) Solve $\left(D^{2}-D D^{\prime}-6\left(D^{\prime}\right)^{2}\right) z=x y$.

OR

13. a) Solve $\frac{\partial^{2} u}{\partial t^{2}}=C^{2} \frac{\partial^{2} u}{\partial x^{2}}$ given that
i) $u(0, t)=0, u(l, t)=0$ for all $t \geq 0$ and
ii) $u(x, 0)=f(x),\left(\frac{\partial u}{\partial t}\right)_{(x, 0)}=\phi(x)$ for $0<x<l$.
b) Solve $\frac{\partial u}{\partial t}=16 \frac{\partial^{2} u}{\partial x^{2}}$ given that
i) $u(0, t)=0, u(1, t)=0$
ii) $u(x, 0)=x^{2}-x, 0 \leq x \leq 1$.
