Roll No:	
Date://	

St. Claret College

Autonomous, Bengaluru

UG END SEMESTER EXAMINATION-DECEMBER 2024 BSC- I SEMESTER MT 124: MATHEMATICS- I

TIME: 3 hours

11

MAX. MARKS: 80

This paper contains FOUR printed pages and FOUR parts

Instructions:

- 1. Verify and ensure that the question paper is completely printed.
- 2. Any discrepancies or questions about the exam paper must be reported to the HOD within 1 hour after the examination.
- 3. Students must check the course title and course code before answering the question paper.

PART-A

Answer ALL questions. Each answer carries ONE mark.

 $[1 \times 10 = 10]$

- 1. What are the eigenvalues of an identity matrix of order 6?
 - a) 6
 - b) 1
 - c) -1
 - d) 3
- 2. Rank of a null matrix is
 - a) 1
 - b) -1
 - c) Not defined
 - d) 0
- 3. If r = n, then the system of homogeneous linear equations will have
 - a) Only trivial solution
 - b) Non-trivial solution
 - c) Unique solution
 - d) Infinitely many solutions

- 4. What is the n^{th} derivative of e^{ax} , where a is a constant?
 - a) $a^n e^{ax}$
 - b) e^{ax}
 - c) $n!e^{ax}$
 - d) $(-1)e^{ax}$
- 5. If $f(x) = \cot x$, what is f''(x)?
 - a) -cosec²x
 - b) $2cosec^2x cot x$
 - c) $-2\cos ec^2x$
 - d) $cosec^2x$
- 6. Evaluation of $\int_0^{\frac{\pi}{2}} \cos^5 x \, dx$ is
 - a) $\frac{8}{15}$
 - b) $\frac{88}{25}$
 - c) 38
 - 15 28
 - d) $\frac{28}{80}$
- 7. The area of the Lemniscate $r^2 = a^2 \cos 2\theta$ is
 - a) a^2
 - b) a^3
 - c) a^4
 - d) a^6
- 8. The equation $x^2 + y^2 + z^2 = 49$ represents a sphere with
 - a) Radius 49 and center at (0, 0, 0)
 - b) Radius 7 and center at (0, 0, 0)
 - c) Radius 7 and center at (49, 0, 0)
 - d) Radius 7 and center at (1, 1, 1)
- 9. For what value of k the two spheres $x^2 + y^2 + z^2 + 6z k = 0$ and $x^2 + y^2 + z^2 + 10y 4z 8 = 0$ cuts orthogonally?
 - a) k = 1
 - b) k = 4
 - c) k = 6
 - d) k = 2
- 10. The equation of a right circular cone in its standard form is
 - a) $x^2 + y^2 = z^2 \tan^2 \alpha$
 - b) $x^2 + y^2 + z^2 = tan^2 \alpha$
 - c) $x^2 + y^2 = z^2 \tan^3 \alpha$
 - d) $x^2 + v^2 z^2 = tan^2 \alpha$

PART-B

Answer any TEN questions. Each answer carries TWO marks.

 $[2 \times 10 = 20]$

- 11. Find the rank of the matrix $A = \begin{bmatrix} 4 & 3 & 2 & 2 \\ 5 & 1 & 3 & 4 \end{bmatrix}$.
- 12. Define symmetric matrix with an example.
- 13. State the Cayley Hamilton Theorem.
- 14. Find the n^{th} derivative of $\cos(1-4x)$.
- 15. Find the n^{th} derivative of $\cos^4 x$.
- 16. Find the total differential of f(x, y, z) = x + y + z + xyz.
- 17. Evaluate $\int_0^{\frac{\pi}{2}} \sin^6 x \, dx$.
- 18. Evaluate $\int_0^{\frac{\pi}{2}} \sin^5 x \cos^6 x \, dx.$
- 19. Evaluate $\int_0^{\pi} \frac{1-\cos\theta}{1+\cos\theta} \sin^2\theta \ d\theta$.
- 20. Find the equation of the sphere whose centre is (2, -3, 4) and radius is 5.
- 21. Show that the spheres $x^2 + y^2 + z^2 + 6y + 14z + 28 = 0$ and $x^2 + y^2 + z^2 + 6x + 8y + 4z + 24 = 0$ cut orthogonally.
- 22. Find the equation of the right circular cone whose vertex is (2, -3, 5), axis makes equal angles with the coordinate axes and with semi vertical angle $cos^{-1}\left(\frac{\sqrt{2}}{3}\right)$.

PART-C

Answer any FOUR questions. Each answer carries FIVE marks.

 $[5 \times 4 = 20]$

- 23. Show that the system of equations x + y + z = 6; x + 2y + 3z = 14; x + 4y + 7z = 30 is consistent and solve them.
- 24. Find the n^{th} derivative of $\frac{1}{6x^2-5x+1}$
- 25. Verify Euler's theorem for the function $u = \frac{x(x^3 y^3)}{(x^3 + y^3)}$
- 26. Find the length of the arc of the parabola $y^2 = 4ax$ which is intercepted between the points of intersection with the line y = 2x.
- 27. Find the area bounded by the asteroid $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$.
- 28. Find the equation of a right circular cylinder of radius 2 whose axis passes through (1, 2, 3) and has direction cosines proportional to 2, -3, 6.

PART-D

Answer any THREE questions. Each answer carries TEN marks.

 $[10 \times 3 = 30]$

- 29. Find the eigen values and eigen vectors of the matrix $A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$.

 30. Verify Cayley Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix}$ and hence find its inverse.
- 31. If $u = x^2 2y$ and v = x + y, find $J = \frac{\partial(u,v)}{\partial(x,y)}$ and $J' = \frac{\partial(x,y)}{\partial(u,v)}$ and verify that JJ' = 1.
- 32. a) Find the area of the surface generated by revolving about the y axis the curve $x = y^3$ from y = 0 to y = 2.
 - b) Find the volume of the solid obtained by revolving the cardioid $r = a (1 + \cos \theta)$ about the initial line. (5 marks)
- 33. a) Find the equation of the tangent plane to the sphere

$$3(x^2 + y^2 + z^2) - 2x - 3y - 4z - 22 = 0$$
 at $(1, 2, 3)$.

b) Find the right circular cylinder generated by revolving the line $\frac{x-1}{2} = \frac{y-3}{2} = \frac{z-5}{-1}$ about the line $\frac{x+1}{2} = \frac{y+3}{2} = \frac{z+5}{-1}$. (6 marks)