66
 V Semester B.A./B.Sc. Examination, March 2023 (CBCS) (2022-23 and Onwards) (Fresh)

Paper - V : MATHEMATICS
Time : 3 Hours
Instruction : Answer all Parts.

Max. Marks : 70
$(5 \times 2=10)$

1) In a ring $(R,+, \cdot)$, prove that $a .(b-c)=a . b-a . c \forall a, b, c \in R$.
2) Define left and right ideal of ring.
3) If F is a homomorphism of a ring R into R^{\prime} then prove that $f(0)=0^{\prime}$, where 0 and 0^{\prime} are the identity element of R and R^{\prime} respectively.
4) Write the Euler's equation when f is dependent of x.
5) Find the function y which makes the integral $I=\int_{x_{1}}^{x_{2}}\left[1+x y^{\prime}+\left(y^{\prime}\right)^{2}\right] d x$.
6) Prove that $E \nabla=\nabla E=\Delta$.
7) Write the Lagrange's inverse interpolation formula.
8) Write the Simpson's $(1 / 3)^{\text {rd }}$ rule formula.
PART - B
II. Answer any three questions.
9) Prove that intersection of any two subrings of a ring are subring. Give an example to show that union of two subrings of a ring need not be a subring.
10) Prove that the set $R=\{0,1,2,3,4,5\}$ is a commutative ring w.r.t. addition and multiplication modulo 6 .
11) Prove that the set of all matrices of the form $M=\left\{\left[\begin{array}{ll}a & b \\ 0 & 0\end{array}\right]: a, b \in R\right\}$ is a non- commutative ring without unity w.r.t. addition and multiplication of matrices.
P.T.O.
12) Prove that $\left(Z_{5},+_{5}, x_{5}\right)$ is an integral domain w.r.t. addition and multiplication modulo 5.
13) State and prove fundamental theorem of homomorphism.
PART - C
III. Answer any three questions.
14) Derive the Euler's equation in the form $\frac{\partial f}{\partial y}-\frac{d}{d x}\left(\frac{\partial f}{\partial y^{\prime}}\right)=0$.
15) Show that the extremal of the functional $\int_{x_{1}}^{x_{2}}\left(\frac{y^{\prime}}{y}\right)^{2} d x$ is expressible in the form $y=a e^{b x}$.
16) Define Geodesic. Prove that geodesic on plane is a straight line.
17) If a cable hangs freely under gravity from the fixed points, then show that the shape of the curve is catenary.
18) Find the extremal of the functional $I=\int_{0}^{\pi}\left(\left(y^{\prime}\right)^{2}-y^{2}\right) d x$ under the conditions $y(0)=0, y(\pi)=1$ and subjected to the constraint $\int_{0}^{\pi} y d x=1$.
PART - D
IV. Answer any four questions.
($4 \times 5=20$)
19) Find the cubic polynomial which takes the following data.

\mathbf{x}	0	1	${ }^{\text {h }} 2$	3
$\mathbf{f}(\mathbf{x})$	1	2	1	10

20) Apply Newton backward interpolation formula find f(84) from the following data.

\mathbf{x}	40	50	60	70	80	90
$\mathbf{f (x)}$	184	204	226	250	276	304

21) Express $3 x^{3}-4 x^{2}+3 x-11$ in factorial notation and also find their successive differences.
22) Use the method of separation of symbols to prove that

$$
u_{0}+u_{1}+u_{2}+\ldots+u_{n}={ }^{n+1} c_{1} u_{0}+{ }^{n+1} c_{2} \Delta u_{0}+{ }^{n+1} c_{3} \Delta^{2} u_{0}+\ldots+\Delta^{n} u_{0}
$$

23) Using Lagrange's interpolation formula find $f(10)$ from the following data.

\mathbf{x}	5	6	9	11
$\mathbf{y = f (x)}$	12	13	14	16

24) Evaluate $\int_{1}^{5} \log _{10} x d x$ by using trapezoidal rule, divide [1,5] into eight equal
parts.
PART - E
V. Answer any two questions.
25) Find the velocity and acceleration at time $t=1$ from the following data.

\mathbf{t}	1	2	3	4	5	6
$\mathbf{f}(\mathbf{t})$	1	8	27	64	125	216

26) The specific gravity of zinc sulphate solution of various concentration at $15^{\circ} \mathrm{C}$ is given in the table. Obtain the specific gravity of 15.8% at $15^{\circ} \mathrm{C}$.

Conce.	10	12	14	16	18	20	22
Spec. gra.	1.059	1.073	1.085	1.097	1.110	1.124	1.137

27) Find the path in which a particle in the absence of friction will slide from one point to another in the shortest time under the action of gravity.
