

CS - 163

Max. Marks: 70

66 V Semester B.A./B.Sc. Examination, March 2023 (CBCS) (2022-23 and Onwards) (Fresh) Paper – V : MATHEMATICS

Col

LIBRAR

Time : 3 Hours

Instruction : Answer all Parts.

- I. Answer any five questions :
 - 1) In a ring $(R, +, \cdot)$, prove that $a.(b c) = a.b a.c \forall a, b, c \in R$.
 - 2) Define left and right ideal of ring.
 - 3) If F is a homomorphism of a ring R into R' then prove that f(0) = 0', where 0 and 0' are the identity element of R and R' respectively.
 - 4) Write the Euler's equation when f is dependent of x.
 - 5) Find the function y which makes the integral $I = \int_{-\infty}^{\infty} [1 + xy' + (y')^2] dx$.

6) Prove that $E\nabla = \nabla E = \Delta$.

Write the Lagrange's inverse interpolation formula.

8) Write the Simpson's $\left(\frac{1}{3}\right)^{rd}$ rule formula.

PART – B

- II. Answer any three questions.
 - 9) Prove that intersection of any two subrings of a ring are subring. Give an example to show that union of two subrings of a ring need not be a subring.
 - Prove that the set R = {0, 1, 2, 3, 4, 5} is a commutative ring w.r.t. addition and multiplication modulo 6.
 - 11) Prove that the set of all matrices of the form $M = \left\{ \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix} : a, b \in R \right\}$ is a

non- commutative ring without unity w.r.t. addition and multiplication of matrices.

 $(5 \times 2 = 10)$

(3×5=15)

P.T.O.

CS - 163

-2-

 $(3 \times 5 = 15)$

- Prove that (Z₅, +₅, ×₅) is an integral domain w.r.t. addition and multiplication modulo 5.
- 13) State and prove fundamental theorem of homomorphism.

- III. Answer any three questions.
 - 14) Derive the Euler's equation in the form $\frac{\partial f}{\partial y} \frac{d}{dx} \left(\frac{\partial f}{\partial y'} \right) = 0$.
 - 15) Show that the extremal of the functional $\int_{x_1}^{x_2} \left(\frac{y'}{y}\right)^2 dx$ is expressible in the form $y = ae^{bx}$.
 - 16) Define Geodesic. Prove that geodesic on plane is a straight line.
 - If a cable hangs freely under gravity from the fixed points, then show that the shape of the curve is catenary.
 - 18) Find the extremal of the functional $I = \int_{0}^{\infty} ((y')^2 y^2) dx$ under the conditions

y(0) = 0, $y(\pi) = 1$ and subjected to the constraint $\int_{0}^{\pi} y dx = 1$.

IV. Answer any four questions.

 $(4 \times 5 = 20)$

19) Find the cubic polynomial which takes the following data.

x	0	1	*2	3
f(x)	1	2	1	10

 Apply Newton backward interpolation formula find f(84) from the following data.

x	40	50	60	70	80	90
f(x)	184	204	226	250	276	304

21) Express $3x^3 - 4x^2 + 3x - 11$ in factorial notation and also find their successive differences.

22) Use the method of separation of symbols to prove that

 $u_0 + u_1 + u_2 + \dots + u_n = {}^{n+1}c_1u_0 + {}^{n+1}c_2\Delta u_0 + {}^{n+1}c_3\Delta^2 u_0 + \dots + \Delta^n u_0.$

23) Using Lagrange's interpolation formula find f(10) from the following data.

x	5	6	9	11
y = f(x)	12	13	14	16

24) Evaluate $\int_{1} \log_{10} x \, dx$ by using trapezoidal rule, divide [1, 5] into eight equal parts.

PART – E

V. Answer any two questions.

25) Find the velocity and acceleration at time t = 1 from the following data.

t	1	2	3	4	5	6
f(t)	1	8	27	64	125	216

26) The specific gravity of zinc sulphate solution of various concentration at 15°C is given in the table. Obtain the specific gravity of 15.8% at 15°C.

Conce.	10	12	14	16	18	20	22
Spec. gra.	1.059	1.073	1.085	1.097	1.110	1.124	1.137

27) Find the path in which a particle in the absence of friction will slide from one point to another in the shortest time under the action of gravity.

 $(2 \times 5 = 10)$