71
 V Semester B.A./B.Sc. Examination, March 2023
 (CBCS) (2022-23 and Onwards) (Fresh)
 MATHEMATICS
 Paper 6(A) : Elective - I

Time : 3 Hours
Instruction : Answer all Parts.
PART - A
I. Answer any five questions.

Max. Marks : 70

1) If $\phi=x^{2}+y^{2}+4 z^{2}$, find $\nabla^{2} \phi$.
2) Show that the vector $\vec{F}=(x+3 y) \hat{i}+(y-3 z) \hat{j}+(x-2 z) \hat{k}$ is solenoidal.
3) Show that curl $(\operatorname{grad} \varphi)=0$.
4) Evaluate $\int_{c}\left(x^{2}-y\right) d x+\left(y^{2}+x\right) d y$, where c is the curve given by $x=t, y=t^{2}+1,0 \leq t \leq 1$.
5) Evaluate $\int_{0}^{2} \int_{1}^{2}\left(x^{2}+y^{2}\right) d x d y$.
6) Evaluate $\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} e^{x+y+z} d x d y d z$.
7) Using Stoke's theorem prove that $\operatorname{div}(\operatorname{curl} \vec{F})=0$.
8) If V is the volume of a region bounded by a closed surface s , show that $\iint_{s} \vec{r} \cdot \hat{n} d s=3 V$.
PART - B
II. Answer any four questions.
($4 \times 5=20$)
9) Show that $\nabla^{2} f(r)=f^{\prime \prime}(r)+\frac{2}{r} f^{\prime}(r)$, where $r^{2}=x^{2}+y^{2}+z^{2}$.
10) If $\vec{F}=(x+y+a z) \hat{i}+(b x+2 y-z) \hat{j}+(x+c y+2 z) \hat{k}$, find a, b, c such that \vec{F} is irrotational, then find φ such that $\vec{F}=\nabla \varphi$.
11) Prove that the surfaces $4 x^{2} y+z^{3}=4$ and $5 x^{2}-2 y z=9 x$ intersect orthogonally at the point $(1,-1,2)$.
12) If $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$, show that $\operatorname{div}\left(\frac{\vec{r}}{r^{2}}\right)=\frac{1}{r^{2}}$.
13) Show that $\vec{f}=2 x y z \hat{i}+x^{2} z \hat{j}+x^{2} y \hat{k}$ is irrotational. Also find a scalar function ϕ such that $\vec{f}=\nabla \phi$.
14) Divergence of a vector product for any vector fields $\vec{f} \times \vec{g}$, then prove that $\nabla \cdot(\vec{f} \times \vec{g})=\vec{g} \cdot(\nabla \times \vec{f})-\vec{f}(\nabla \times \vec{g})$.
PART - C
III. Answer any five questions.
15) Evaluate $\int_{c}(3 x+y) d x+(2 y-x) d y$ along the line joining the points $(0,1)$ and $(3,10)$.
16) Evaluate $\int_{c}(x+y+z) d z$, where c is the line joining the points $(1,2,3)$ and $(4,5,6)$.
17) Evaluate $\iint_{R} x y d x d y$, where R is the region bounded by the x-axis, the ordinates $\mathrm{x}=2 \mathrm{a}$ and the parabola $\mathrm{x}^{2}=4 \mathrm{ay}, \mathrm{a}>0$.
18) Evaluate $\iint_{R} \frac{x^{2} y^{2}}{x^{2}+y^{2}} d x d y$, where R is the annular region between the circles $x^{2}+y^{2}=4$ and $x^{2}+y^{2}=1$.
19) Evaluate $\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}} \sqrt{a^{2}-x^{2}-y^{2}} d x d y$.
20) Evaluate $\int_{1}^{2} \int_{0}^{1-x} \int_{0}^{1-x-y} \frac{d x d y d z}{(x+y+z)^{3}}$.
21) Prove that $\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}} \int_{0}^{\sqrt{a^{2}-x^{2}-y^{2}}} \frac{d x d y d z}{\sqrt{a^{2}-x^{2}-y^{2}-z^{2}}}=\frac{\pi^{2} a^{2}}{8}$ by changing to spherical polar co-ordinates.
22) Find the volume of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ using triple integration.
PART - D
IV. Answer any three questions.
23) State and prove Green's theorem.
24) Verify Green's theorem in a plane for $\int_{c}\left(3 x^{2}-8 y^{2}\right) d x+2 y(2-3 x) d y$, where c is the rectangle enclosed by the lines $x=0, y=0$ and $x+y=1$.
25) Using Gauss divergence theorem, evaluate $\iint_{s} \vec{F} . \hat{n} d s$, where $\vec{F}=2 x y \hat{i}+y z^{2} \hat{j}+x z \hat{k}$ and s is the total surface of the rectangular parallelopiped bounded by the points $x=0, y=0, z=0$ and $x=1, y=2$, $z=3$.
26) State and prove Stoke's theorem.
27) Evaluate by Stoke's theorem $\oint_{c} y z d x+z x d y+x y d z$, where c is the curve
