I Semester B.C.A. Degree Examination, November/December 2015 (CBCS) (Y2K14 Scheme) BCA - 105 T: DISCRETE MATHEMATICS

Time: 3 Hours

Instruction: Answer all Sections.

Max. Marks: 100

. Answerany ten:

 $(10 \times 2 = 20)$

- 1) If $A = \{2, 3, 4, 8\}$, $B = \{1, 3, 4\}$ and $U = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$. Verify $A B = A \cap \overline{B}$.
- 2) If $A = \{2, 3, 5\}$, $B = \{4, 5, 6\}$ and $C = \{1, 2\}$ find $A \times B$.
- 3) Define Tautology.
- 4) Define diagonal matrix.

5) If
$$2Y + \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 3 & 8 \\ 7 & 2 \end{bmatrix}$$
, find Y.

- 6) State Cayley Hamilton theorem.
- 7) If $\log_7 x + \log_7 x^2 + \log_7 x^3 = 6$, find x.
- 8) Define combination.
- 9) Define Abelian group.

10) If
$$\overrightarrow{a} = 2i + 3j - 4k$$
, $\overrightarrow{b} = 3i - 4j - 5k$ find $\begin{vmatrix} \overrightarrow{a} + \overrightarrow{b} \end{vmatrix}$.

- 11) Find the distance between the point, A = (-7, 4) and B = (-5, -1).
- 12) Find the equation of the line with slope 2 and cutting off an intercept 3 on Y-axis.

SECTION - B

II. Answer any six of the following:

 $(6 \times 5 = 30)$

- 13) If $A = \{a, b, c, d\}$, $B = \{c, d\}$ and $C = \{d, e\}$ find A B, $(A B) \cap (B C)$, $B \times C$.
- 14) If $f: R \rightarrow R$ is defined by f(x) = 2x + 5, prove that f is one-one and onto.
- 15) Prove that $(p \land q) \land \sim (p \lor q)$ is a contradiction.
- 16) Write the converse, inverse and contra positive of "If I work hard then I get a grade".
- 17) Find the truth values of the propositions p, q and r, if the compound proposition $(p \rightarrow \sim q) \rightarrow r$ is false.

18) If
$$2A + B = \begin{bmatrix} 4 & 4 & 7 \\ 7 & 3 & 4 \end{bmatrix}$$
, $A - 2B = \begin{bmatrix} -3 & 2 & 1 \\ 1 & -1 & 2 \end{bmatrix}$ then find A and B.

- 19) If $A = \begin{bmatrix} -1 & 3 \\ -2 & 4 \end{bmatrix}$, find A^{-2} using Cayley Hamilton theorem.
- 20) Solve the equations 5x + 2y = 4, 7x + 3y = 5 using Matrix method.

III. Answer any six of the following:

 $(6 \times 5 = 30)$

- 21) If $\log\left(\frac{a+b}{2}\right) = \frac{1}{2}(\log a + \log b)$, show that a = b.
- 22) In how many ways the letters of the word "EVALUATE" be arranged so that all vowels are together.
- 23) If ${}^{15}C_{r+3} = {}^{15}C_{2r-3}$, find r.
- 24) If $G = \{3^n : n \in z\}$, prove that G is an abelian group under multiplication.
- 25) Prove that $G = \{1, 5, 7, 11\}$ is a group under multiplication modulo 12.
- 26) Find the value of λ for which the vectors $\vec{a} = 3i + j 2k$ and $\vec{b} = i + \lambda j 3k$ are perpendicular to each other.
- 27) Find the area of the triangle whose vertices are A(1, 2, 3), B(2, 5, 1) and C(-1, 1, 2) using vector method.
- 28) If the vectors 2i 3j + mk, 2i + j k and 6i j + 2k are coplanar, find m.

SECTION - D

IV. Answer any four of the following:

 $(4 \times 5 = 20)$

- 29) Show that the points (3, 2), (0, 5), (-3, 2) and (0, -1) are the vertices of a square.
- 30) Find the ratio in which the x-axis divides the line segment joining the points (7, -3) and (5, 2).
- 31) Find the equation of the locus of a point which moves such that the sum of the squares of the distance from (a, 0) and (-a, 0) is $2C^2$.
- 32) Find the equation of the line whose x-intercept is 'a' and y-intercept is b.
- 33) If the line 2x 5y + 1 = 0 is perpendicular to (p + 1)x + (2p + 3)y + 3 = 0, find p.
- 34) Find the equation of the line passing through the point of intersection of 2x + 3y 1 = 0 and 3x + 4y 6 = 0 and parallel to the line 5x y = 0.