-14-

II Semester B.C.A. Degree Examination, April/May 2015 (CBCS) (2014 – 15 and Onwards)

Computer Science

BCA 205: NUMERICAL AND STATISTICAL METHODS

Time: 3 Hours

Max. Marks: 100

Instruction: Answer all Sections.

SECTION - A

I. Answer any ten of the following.

 $(2\times10=20 \text{ Marks})$

- 1) Multiply + \cdot 5543E12 × \cdot 4111E 15.
- 2) Define:
 - i) Truncation error
 - ii) Round off error.
- 3) Write the formula for Newton-Raphson method.
- 4) Construct the difference table for the following data.

X	0	1	2	3	4	
f (x)	1	3	7	13	21	

- 5) Write Newton's Backward interpolation formula.
- 6) Explain Doolittle method of solving linear equations of the form AX = B.
- 7) Find the positive root of the equation $x^3 3x 5 = 0$ which lies between 2 and 2.5 by bisection method (use one approximation).
- 8) From the following data compute the value of harmonic mean. 85, 70, 10, 75, 500, 8, 42, 250, 40, 36.
- 9) Define correlation.
- 10) Write a formula to calculate Arithmetic mean by step deviation method.

P.T.O.

- 11) State Bayes theorem.
- 12) From a pack of 52 cards, what is the probability of drawing one card that it is either king or queen

SECTION - B

II. Answer any six of the following.

 $(6\times5=30 \text{ Marks})$

- 13) Find a real root of the equation $f(x) = x^3 5x + 1 = 0$ lies in the interval (0, 1) perform four iterations of the secant method.
- 14) Estimate the population during the period 1955 from the following data.

Year	1921	1931	1941	1951	1961	1971
Pop. in lakhs	20	24	29	36	46	51

15) Using Lagrange's interpolation formula find the value of f(x) at x = 6 from the data.

x	3	7	9	10	
f(x)	168	120	72	63	

- 16) Evaluate $\int_0^6 \frac{dx}{1+x^2}$ by Trapizoidal rule by taking n = 1.
- 17) By using Simpson's $\frac{3}{8}^{th}$ rule evaluate $\int_0^3 \frac{dx}{(1+x)^2}$ by taking n=1.
- 18) Solve by Gauss-Seidel method.

$$10 \times y + z = 12$$
, $x+10 y + z = 12$, $x + y + 10 z = 12$

19) Solve using Crout's LU decomposition method.

$$x_1 + x_2 + x_3 = 1$$

 $4x_1 + 3x_2 - x_3 = 6$
 $3x_1 + 5x_2 + 3x_3 = 4$

20) Determine the single-precision machine representation of the decimal number 52.234375 in both single precision and double precision.

SECTION-C

III. Answer any six of the following.

 $(6\times5=30 \text{ Marks})$

21) Solve by Gauss-elimination method.

$$x + 2y + 3z = 6$$
, $2x + 4y + z = 7$, $3x + 2y + 9z = 14$

- 22) Find the dominant eigen value of the matrix $A = \begin{bmatrix} 4 & 2 \\ 1 & 3 \end{bmatrix}$.
- 23) Solve the system of equations by Gauss-Jacobi method. $10 x + y + z = 12, \quad 2x + 10 y + z = 13, \quad 2x + 2y + 10 z = 14$
- 24) Use Taylors series method to find y (1.02) when $\frac{dy}{dx} = xy 1$ for y(1) = 2.
- 25) Solve $\frac{dy}{dx} = 2x y$ with y (0) = 3 by Picard's iterative method upto third approximation.
- 26) Solve $\frac{dy}{dx} = xy$, y (1) = 2 by Runge-Kutta IV order method by taking n = 0.2.
- 27) Calculate HM from the following data 85, 70, 10, 75, 500, 8, 42, 250, 40, 36
- 28) A bag X contains 2 white, 3 red balls and a bag Y contains 4 white and 5 red balls. One ball is drawn at random from one of the bags and is found to be red. Find the probability that it was drawn from bag Y.

SECTION - D

IV. Answer any four from the following.

 $(4\times5=20 \text{ Marks})$

29) From the following data calculate Arithmetic mean

Marks	0 – 10	10 – 20	20 –30	30 – 40	40 – 50	50 60
No. of Students	10	5	30	25	10	20

30) Compute the standard deviation from the following data.

Salaries in thousands	45	50	55	60	65	70	75	80
Number of Persons	3	5	8	7	9	7	4	7

- 31) Calculate Karl Pearson's coefficient of skewness for the following data. 25, 15, 23, 40, 27, 25, 23, 25, 20
- 32) A die is thrown twice and the sum of the numbers appearing is observed to be 6. What is the conditional probability that the number 4 has appeared at least once?
- 33) If A and B are two events then prove that $P(A/\overline{B}) = \frac{P(A) P(A \cap B)}{1 P(B)}$ where $P(B) \neq 1$.
- 34) Fit a normal distribution to the following data.

Xi	5	7	9	11	13	15	17	19	21	23	25
fi	2	8	16	23	36	44	39	21	14	16	2