17

# Il Semester B.C.A. Degree Examination, April/May 2015 (Y2K8 Scheme)

# COMPUTER SCIENCE

BCA - 203: Mathematics

(R 100- 2011-12 and Onwards, R - 90-Prior to 2011-12)

Time: 3 Hours

Max. Marks: 100/90

Instructions: 1) Section A, B, C, D and E is common to all students.

2) Section F is aplicable to the student 2011-12 onwards.

### SECTION - A

I. Answer any ten of the following:

 $(10 \times 2 = 20)$ 

1) Define eigen values and eigen vectors.

2) Find x, if 
$$\begin{vmatrix} x & 3 & -2 \\ 3 & -2 & 5 \\ 0 & 1 & 2 \end{vmatrix} = 0$$
.

- 3) Define a semi group with example.
- 4) In a group of rational numbers \* is defined by a \* b = a + b ab. Find the identity and inverse.

5) If 
$$\overset{\rightarrow}{a} = i - 2j + 3k$$
 and  $\overset{\rightarrow}{b} = 2i - j - 3k$ , Find the projection of  $\overset{\rightarrow}{a}$  on  $\overset{\rightarrow}{b}$ .

6) If 
$$\overrightarrow{a} = 3i - j + 3k$$
 and  $\overrightarrow{b} = 3i + 2j - k$  Find  $|\overrightarrow{a} + 3\overrightarrow{b}|$ .

- 7) Find the n<sup>th</sup> derivative of e<sup>3x</sup>.sin2x.
- 8) Find the  $\,n^{th}$  derivative of sin3xcosx.
- 9) Evaluate ∫logx.dx.
- 10) Evaluate  $\int \frac{dx}{(x+1)(x+3)}$ .



11) Write the order and degree of the differential equation

$$\left(\frac{d^3y}{dx^3}\right)^3 + \left(\frac{d^2y}{dx^2}\right)^5 + \frac{dy}{dx} + y = e^x.$$

- 12) Solve  $\frac{dy}{dx} + \frac{4y+3}{2x+1} = 0$ .
- 13) Find the distance between the points (3, 4, -2) and (-4, 2, 5).
- 14) Find the direction cosine of the vector 3i + 4j + k.
- 15) Find the centroid of a triangle with vertices (3, -2, 4), (5, -4, 5) and (1, 4, 2).

### SECTION - B

II. Answer any four of the following:

 $(4 \times 5 = 20)$ 

- 16) Find the angle between diagonals of a cube.
- 17) Solve x + y 2z = 0, 2x y + z = 2, x + 2y z = 2 by matrix method.
- 18) Using the Cayley-Hamilton theorem find the inverse of the matrix

$$A = \begin{bmatrix} -5 & 4 \\ -2 & 1 \end{bmatrix}.$$

- 19) Find the  $n^{th}$  derivative of  $e^{ax}sin(bx + c)$ .
- 20) Find the n<sup>th</sup> derivative of  $\frac{x+3}{(x+1)(2x+3)}$ .
- 21) If  $y = \sin(m\sin^{-1}x)$ , then prove that  $(1 x^2)y_{n+2} (2n + 1)xy_{n+1} (n^2 m^2)y_n = 0$

### SECTION - C

III. Answer any four of the following:

 $(4 \times 5 = 20)$ 

- 22) Prove that  $G = \{2, 4, 6, 8\}$  is a group under multiplication modulo 10.
- 23) Prove that  $G = \{1, W, W^2\}$  forms an Abelian group under multiplication.
- 24) Prove that  $H = \{1, -1\}$  is a sub group of  $G = \{1, -1, i, -i\}$  under multiplication.
- 25) Find the area of the parallelogram whose diagonals are 4i + 2j k and 3i + j + 4k.

- 26) Prove that points A(2, 3, -1) B(1, -2, 3) C(3, 4, -2) and D(1, -6, 6) are coplanar.
- 27) If  $\stackrel{\rightarrow}{a} = 3i + 2j 3k$ ,  $\stackrel{\rightarrow}{b} = i + 2j k$  and  $\stackrel{\rightarrow}{c} = i 2j + 4k$ . Find  $\stackrel{\rightarrow}{a} \times (\stackrel{\rightarrow}{b} \times \stackrel{\rightarrow}{c})$ .

### SECTION - D

## IV. Answer any four of the following:

 $(4 \times 5 = 20)$ 

- 28) Evaluate  $\int \frac{dx}{2x^2 + 4x + 9}$ .
- 29) Evaluate  $\int x \cos 2x dx$ .
- 30) Evaluate  $\int_{0}^{\frac{\pi}{2}} \frac{\cos^{6} x}{\cos^{6} x + \sin^{6} x} dx$ .
- 31) Solve  $\frac{dy}{dx} = \cos(x + y)$ .
- 32) Solve  $(x^2 + 2y^2) dx xydy = 0$ .
- 33) Verify the equation (4x + 3y + 1) dx + (3x + 2y + 1) dy = 0 for exactness and hence solve.

### SECTION - E

# V. Answer any two of the following:

 $(2 \times 5 = 10)$ 

- 34) Find the angle between the lines whose direction ratios are 1, -1, 2 and 1, 0, -3.
- 35) Find the equation of the plane passing through (1, 1, 1) (1, -1, 1) and (-7, -3, -5).
- 36) Show that the points (1, 2, 3) and (-3, -1, -1) (5, 5, 7) are collinear. Also find the equation of the line through these points.
- 37) Find the length and equation of the shortest distance between the z-axis and the line  $\frac{x+1}{3} = \frac{y-2}{4} = \frac{z}{5}$ .



# SECTION – F (Section F is aplicable to the Student 2011-12 Onwards)

VI. Answerany two of the following:

 $(2 \times 5 = 10)$ 

- 38) Find the equation of the sphere which passes through the circle  $x^2 + y^2 + z^2 9 = 0 = 2x + 3y + 4z 5$  and the point (1, 2, 3).
- 39) Find the equation of the right circular core whose axis  $\frac{x-1}{-1} = \frac{y-2}{3} = \frac{z-3}{3}$  and a generator is  $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ .
- 40) Evaluate  $\int \frac{dx}{4\cos x + 3\sin x + 5}$ .
- 41) Mention any 5 properties of scalar triple product.