Il Semester B.C.A. Degree Examination, May 2016 (CBCS) (2014 – 15 and Onwards) (F+R) COMPUTER SCIENCE

BCA - 205: Numerical and Statistical Methods

Time: 3 Hours

Max. Marks: 100

Instruction: Answer all Sections.

SECTION - A

I. Answer any ten of the following:

 $(10 \times 2 = 20)$

- 1) Multiply $+.5543E12 \times .4111E 15$.
- 2) Define relative error and absolute error.
- 3) Write the formula for Secant method.
- 4) Write the Lagrange interpolation formula.
- 5) Construct the forward difference table for the following data:

X	1	2	3	4	5
f(x)	10	26	58	112	194

- 6) Write the Newton's Backward interpolation formula.
- 7) Write the Simpson's $\frac{3^{th}}{8}$ rule formula.
- 8) Explain Gauss-Elimination method for solving system of linear equations.
- 9) Find the Harmonic Mean (HM) of the following series: 5, 10, 15, 20, 25.
- 10) Define correlation.
- 11) Write the alternate formula for Karl Pearson's coefficient of correlation.
- 12) Define the conditional probability.

SECTION - B

II. Answer any six of the following:

 $(6 \times 5 = 30)$

- 13) Find a root of the equation $x^3 2x 5 = 0$ lies between 2 and 3 by using Bisection method in five stages.
- 14) Estimate f (7.5) from the following table:

X	1	2	3	4	5	6	7	8
f(x)	1	8	27	64	125	216	343	512

15) Using Lagrange's interpolation formula find f(10) from the following data:

X	5	6	9	11
y = f(x)	12	13	14	16

- 16) Find the approximate value of $\int_{0}^{\frac{\pi}{2}} \sqrt{\cos\theta} \, d\theta$ by Simpson's $\frac{1}{3}^{rd}$ rule by dividing $\left[0, \frac{\pi}{2}\right]$ into 6 equal parts.
- 17) Evaluate $\int_{0}^{3} \frac{dx}{(1+x)^2}$ by Simpson's $\frac{3}{8}^{th}$ rule by taking h = 1.
- 18) Solve following system of linear equations using Crout's-LU decomposition method. 2x + 3y + z = -1, 5x + y + z = 9, 3x + 2y + 4z = 11.
- 19) Solve the system of linear equations by Cholesky method.

$$x_1 + 2x_2 + 3x_3 = 5$$
, $2x_1 + 8x_2 + 22x_3 = 6$, $3x_1 + 22x_2 + 82x_3 = -10$.

20) Determine the single-precision machine representation of the decimal number 52.234375 in both single precision and double precision.

SECTION - C

III. Answer any six of the following:

 $(6 \times 5 = 30)$

- 21) Solve the Gauss-Jacobi method. 10x + 2y + z = 9, x + 10y z = -22, 2x 3y 10z = -22.
- 22) Solve by Gauss-Seidel iterative method.

$$10x + y + z = 12$$
, $x + 10y + z = 12$, $x + y + 10z = 12$

- 23) Find the largest eigen value and the corresponding eigen vector of the matrix by using power method $A = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$.
- 24) Solve $\frac{dy}{dx} = y x^2$, y(0) = 1 by Picard's method upto the third approximation. Hence find the value of y(0.1).
- 25) Using Taylor's series method to find y at x = 1.1 and 1.2 considering terms upto third degree given that $\frac{dy}{dx} = x + y$, y(1) = 0.
- 26) Using Runge-Kutta method of IV order, solve $\frac{dy}{dx} = 3x + \frac{y}{2}$ with y(0) = 1, find y(0.2) by taking h = 0.2.
- 27) From the following data calculate Arithmetic Mean (AM) by step deviation method.

Marks	0 – 10	10 – 20	20 – 30	30 – 40	40 – 50	50 – 60
Number of students	10	5	30	25	10	20

- 28) It 'A' and 'B' are two events such that $P(A) = \frac{1}{4}$, $P(B) = \frac{1}{2}$ and $P(A \cap B) = \frac{1}{8}$, Find
 - i) P(A or B)
 - ii) P (not A and not B).

SECTION - D

IV. Answer any four of the following:

 $(4 \times 5 = 20)$

29) Find mean and standard deviation from the following data:

Marks	10	20	30	40	50	60
Frequency	8	12	20	10	7	3

30) Calculate Karl - Pearson's co-efficient of skewness for the following data: 25, 15, 23, 40, 27, 25, 23, 25, 20.

31) If 'A' and 'B' are two events, prove that $P(A/\overline{B}) = \frac{P(A) - P(A \cap B)}{1 - P(B)}$ where $P(B) \neq 1$.

32) A man is known to speak truth 3 out of 4 times. He throws a die and reports that it is a six. Find the probability that it is actually a six.

33) Show that the following distribution represents a discrete probability distribution. Find mean and variance.

χi	10	20	30	40
P(xi)	1 8	3 8	3 8	1 8

34) Find the probability that in a family of 4 children there will be

- i) Atleast one boy.
- ii) Atleast one boy and atleast one girl.

Assume that the probability of male birth is $\frac{1}{2}$.