

III Semester B.C.A. Degree Examination, November/December 2013 (Y2K8 Scheme) (F+R)

BCA 304: OPERATING SYSTEMS

Time: 3 Hours

Max. Marks: 90/100

- Instructions: i) Answer all questions.
 - ii) Section D is applicable only to students who have taken admission in 2012-13 onwards.
 - iii) 100 marks for students of 2012-13 and onwards.
 - iv) 90 marks for repeater students prior to 2012-13.

SECTION - A

Answer any 10 questions.

 $(10 \times 2 = 20)$

- 1. Define time sharing system.
- 2. What is a cooperating process?
- 3. Define long term and short term schedules.
- 4. What is meant by mutual exclusion?
- 5. What does a wait for graph represent?
- Give pictorial representation of circular wait condition in a deadlock state.
- 7. Define logical and physical address.
- 8. What is hit ratio?
- 9. List any 4 different types of file.
- 10. What is a bit vector?
- 11. What are the goals of protection?
- 12. Define seek time.

SECTION - B

Answer any 5 questions.

 $(5 \times 5 = 25)$

- 13. Explain spooling with neat diagram.
- 14. Give a brief note on various CPU scheduling criteria.
- 15. Explain the Resource-Allocation graph.
- 16. Differentiate between internal and external fragmentation.

- 17. What is segmentation? What are its advantages and disadvantages?
- 18. Explain neatly the different directory structures.
- 19. Explain indexed sequential access method in accessing a file.
- 20. Describe the frame allocation algorithms.

SECTION - C

Answer any 3 questions. (15×3=4	5)
21. a) Explain the functions of an operating system.	7
b) Explain the FCFS and priority CPU scheduling algorithms with an example	
each.	8
22. a) Explain how do you evaluate the CPU scheduling algorithms.	0
b) Write Peterson's algorithm for mutual exclusion problem.	5
23. a) Write the necessary conditions for the occurrence of a deadlock. How to prevent deadlock?	0
b) How is memory protection given in memory management system with neat diagram?	5
24. a) Explain segmentation.	8
b) Describe multi programming with fixed-size partitions.	7
25. a) Explain any two page replacement algorithms with an example each.	8
b) Explain the various disk scheduling algorithms.	7
SECTION - D	
Answer any 1 question. (10×1=10))
26. Write short notes on :	
i) Paging	5
ii) PCB	5
27. Write short notes on :	
i) File allocation methods	
ii) Semaphore	