III Semester B.C.A. Degree Examination, November/December 2013 (Y2K8 Scheme) (F + R)

BCA - 305 : DATA STRUCTURES USING C

Time: 3 Hours

Max. Marks: 60/70

Instructions: 1) Answer Sections A, B, C.

- 2) Candidates who have taken admission from 2011, must attend Section D also.
- 3) 70 marks for fresh students (from 2012-13) 60 marks for repeater students prior to 2012-13.

SECTION - A

Answerany ten questions.

 $(1 \times 10 = 10)$

- 1. What is primitive data structure?
- 2. Write the difference between & and * operators.
- 3. What is dynamic memory allocation?
- 4. What is recursion?
- 5. Compare linear and binary search methods.
- 6. Define stack overflow.
- 7. Write the difference between stack and queue.
- 8. What is a priority queue?
- 9. Define linked list.
- 10. What is meant by traversal of a linked list?
- 11. What is depth of a node?
- 12. What is degree of a node?

SECTION - B

Answerany five questions.

 $(3 \times 5 = 15)$

- 13. Explain the time complexity of algorithms.
- 14. Write a recursive function to find the factorial of a number.
- 15. Write the algorithm for binary search method.
- 16. Explain doubly linked list.
- 17. Translate the following expression into postfix. A + B * (C D)/E + F.
- 18. Explain dequeue.
- 19. Explain the creation of a binary tree.

SECTION - C

Ans	Answer any five questions. (5×7=35)		
20.	Explain malloc() ad realloc() functions with an example.	7	
21.	Explain the towers of Hanoi problem for 3 disks.	7	
22.	Write the algorithm to implement merge sort.	7	
23.	Explain the bubble sort method, with an example.	7	
24.	Write a program to implement push and pop operations on stack and to display		
	the elements.	7	
25.	Write an algorithm to insert and delete an element in a circular queue.	7	
26.	a) Write the algorithm to insert an element at the specified position in a linked list.	4	
	b) Write the algorithm to delete an element from the beginning of a linked list.	3	
27.	Explain the traversals of a binary tree.	7	
	SECTION - D	10	
28.	Write a program to insert, delete and display the elements from a simple queue.		
29.	Write a program to create a linked list and insert an element at the beginning of the list and delete an elt from the end of the list.		