V Semester B.C.A. Degree Examination, November/December 2014/

(Y2K7 Scheme) COMPUTER SCIENCE

BCA - 505 : Operations Research

Time: 3 Hours

Max. Marks: 80

Instructions: 1) Answer all Sections.

2) Use graph sheet wherever necessary....

SECTION - A

Answer any eight questions of the following:

 $(8\times3=24)$

LIBRAR

1. Define OR and state the limitations of OR.

- 2. Define basic feasible solution, unbounded solution and optimal solution.
- 3. Define slack and surplus variable with an example.
- 4. Give the mathematical formulation of transportation problem.
- 5. Define total float, free float and independent float.
- 6. Write down the procedure to draw minimum number of lines of the reduced matrix.
- 7. What is pay-off matrix? Give an example.
- 8. Write the dual form of the following primal problem:

$$Z = 3x_1 + 4x_2$$

Subject to
$$2x_1 + 6x_2 \le 16$$

$$5x_1 + 2x_2 \ge 20$$

where $x_1, x_2 \ge 0$

- 9. Explain North-West-corner method.
- 10. Solve the following by min-max principle method.

Player-B

P.T.O.

SECTION - B

Answer any four questions of the following:

 $(4 \times 14 = 56)$

11. a) Solve the following LPP using graphical method:

Maximize
$$Z = 2x_1 + 3x_2$$

Subject to

$$2x_1 + x_2 \le 12$$

$$x_1 + 3x_2 \le 15$$
and $x_1, x_2 \ge 0$

6

b) Solve the following LPP using Simplex method:

Maximize
$$Z = 2x_1 + 2x_2 + 4x_3$$

Subject to $2x_1 + 3x_2 + x_3 \le 240$
 $x_1 + x_2 + 3x_3 \le 300$
 $x_1 + 3x_2 + x_3 \le 300$
and $x_1, x_2, x_3 \ge 0$

O

12. a) Write the dual form of the following LPP:

Min.
$$Z = X_1 + 2X_2$$

Subject to
$$2x_1 + 4x_2 \le 160$$

 $x_1 - x_2 = 30$
 $x_1 \ge 10$

6

b) Solve the following LPP by Big-M method:

and $X_1, X_2, X_3 \ge 0$

Min.
$$Z = 2x_1 + x_2$$

Subject to
$$3x_1 + x_2 = 3$$

 $4x_1 + 3x_2 \ge 6$

$$X_1 + 2X_2 \le 4$$

and
$$x_1, x_2 \ge 0$$

8

13. a) Explain the procedure of modified distribution (MODI) method to solve Transportation Problem (TP).

8

b) Find Initial Basic Feasible Solution (IBFS) for the problem given below by using Least-Cost-Method (LCM):

Distribution Centres

Plant

	D ₁	D ₂	D ₃	D ₄	Supply
P ₁	2	3	11	7	6
P ₂	1	0	6	1	1
P ₃	5	8	15	9	10
Requirement	7	5	3	2	

6

14. a) Write an algorithm to solve an assignment problem.

6

b) Solve the following assignment problem.

Jobs

Machines

	i	11	III	IV
Α	42	35	28	21
В	30	25	20	15
С	30	25	20	15
D	24	20	16	12

Я

- 15. a) Define the following terms:
 - i) Optimistic Time (t₀)
 - ii) Pessimistic Time (t_D)
 - iii) Most Likely Time (t_m)
 - iv) Expected Time (t_e).

Λ

b) A project has following activities and duration:

Activity	Duration (Hours)	
12	4	
1 - '3	5	
1 - 4	3	
· 2 - 3	3	
3 - 4	4	
2 - 6	2	
3 - 5	6	
5 - 6	5	
6 - 8	7	
5 - 8	6	
4 - 7	4	
5 - 7	4	
7 - 8	8	

- a) Draw a network diagram.
- b) Determine the critical path.
- c) Compute free float and total float of each activity.

16. a) Explain Minimax-Maximin principle for mixed strategy games.

b) Find the Saddle point and hence solve the following game:

Player B

6

10

8