CS - 491

I Semester B.C.A. Degree Examination, March 2023 (Y2K14 – CBCS) (R) COMPUTER SCIENCE BCA104T : Digital Electronics

Time : 3 Hours

Instruction : Answer all the Sections.

Max. Marks: 70

SECTION - A

Answer any ten questions :

- 1. What is semi conductor ? Give example.
- 2. Define Ohm's law.
- 3. What are combinational circuits ? Give example.
- 4. Find 2's complement of 00110011.
- 5. Write logic symbol and truth table of X-OR gate.
- 6. Define RMS value.
- 7. Define term waveform and time period.
- 8. What is doping ?
- 9. What is half adder ?
- 10. What is flip-flop ? Mention types of flip-flop.
- 11. What is conductor and insulator ?
- 12. Convert (BC6.54)₁₆ to binary.

(2×10=20)

P.T.O.

CS – 491

SECTION - B

Answer any five questions : (10)		
13.	 a) State and explain Kirchhoff's voltage law. b) State and explain Nortan's theorem. 	5 5
14.	a) What is rectifier ? Explain full wave rectifier.b) Explain forward and reverse bias.	5 5
15.	a) Mention the differences between intrinsic andb) State and prove DeMorgan's theorem.	d extrinsic semiconductor. 5 5
16.	a) Convert the following : i) $(453.26)_{10} = ()_2 = ()_8$ ii) $(1101.110)_2 = ()_8 = ()_{16}$	5
	b) Simplify the following minterm using K-map. $F = \Sigma m(1, 5, 8, 9, 13) + \Sigma d(3, 12).$	5
17.	 a) Prove NAND and NOR gates as universal ga b) With a neat diagram, explain working of full a 	ates. 5 adder. 5
18.	 a) Explain the working of RS flip-flop with a nea b) Design 4 to 1 multiplexer circuit. 	t diagram. 5
19.	 a) Explain SISO shift register with a neat diagra b) Explain Master Slave JK flip-flop with a neat 	ım. 5 diagram. 5
20.	 a) What is energy band? Explain three energy b) Write a brief note on application of shift regis 	bands. 5 ters. 5

2