

II Semester B.C.A. Examination, September/October 2022 (NEP) (2021 – 22 and Onwards) COMPUTER SCIENCE

2.1 : Computer Architecture

Time: 21/2 Hours

Max. Marks: 60

Instruction: Answer any four questions from each Section.

SECTION - A

I. Answer any four questions. Each question carries 2 marks.

 $(4 \times 2 = 8)$

- 1) Convert 673₁₀ to binary.
- 2) Write the logic symbol, expression and truth table of NAND gate.
- 3) State Demorgan's theorem.
- Define opcode and operand.
- 5) Write BSA instruction.
- 6) Define virtual memory.

SECTION - B

II. Answer any four questions. Each question carries 5 marks.

 $(4 \times 5 = 20)$

- 7) Simplify $F(A,B,C,D) = \sum m(0,1,2,4,5,7,8,9,10,11,12,13)$ and draw a circuit diagram.
- 8) Define full adder, draw the truth table and logic diagram for the same.
- 9) Explain memory reference instructions.
- Explain the addressing modes.
- 11) Explain interrupt cycle with suitable example.
- 12) Explain Cache memory.

SECTION - C

III. Answer any four questions. Each question carries 8 marks. (4x8				(4×8=32)
	13)	a)	Differentiate between von Neumann and Harvard architecture.	4
		b)	Explain the working of J.K. flip flop with truth table.	4
	14)	a)	Explain 8 to 3 encoder.	4
		b)	Explain 4 bit shift register.	4
	15)	Ex	plain common bus organization of basic computer with neat diagra	ım. 8
16) Explain data manipulation instructions.		8		
	17)	Ex	plain isolated versus memory mapped I/O.	8
	18)	Ex	plain DMA with its block diagram and explain its working.	8

