UG – 419

IV Semester B.C.A. Examination, September/October 2022 (CBCS) (F+R) (2015 – 16 and Onwards) COMPUTER SCIENCE BCA 405 : Operations Research

Time : 3 Hours

Instruction : Answer all the Sections.

Max. Marks: 100

 $(10 \times 2 = 20)$

Colle

ngalor

SECTION – A

- I. Answer any ten of the following :
 - What is Operations Research ?
 - 2) Write the standard form of linear programming problem.
 - 3) Define slack and surplus variable.
 - 4) What are transportation problems ?
 - 5) Define basic feasible solution and optimum solution in transportation problems.
 - 6) What are the different methods of solving assignment problems ?
 - 7) How do you convert maximization problem to minimization for solving assignment problems ?
 - 8) Explain Fulkerson's rules.
 - 9) Define optimistic time and pessimistic time.
 - 10) What are the applications of PERT/CPM ?
 - 11) Define saddle point and value of the game.
 - 12) What are the different methods available to solve games with mixed strategies ?

SECTION - B

II. Answer any four of the following :

- 13) a) Explain phases of operations research.
 - b) A company produces two types of leather belts, type-A and type-B. Profits on two types of belts are Rs. 40 and Rs. 30 respectively per belt. Each belt of type-A requires twice as much time required for a belt of type-B and the company could produce 1000 belts per day. But the supply of leather is sufficient only for 800 belts per day. Belt of type- 'A' requires a fancy buckle and only 400 fancy buckles are available for this, per day. For belt of type-B, only 700 buckles are available per day. Formulate the problem as LPP.

P.T.O.

5

5

 $(4 \times 10 = 40)$

UG - 419

5

5

4

6

5

5

14) a) Explain the steps involved in graphical solution to LPP.

b) Solve the following LPP by graphical method :

 $\begin{array}{ll} \text{Maximize,} & z = 2x_1 + 3x_2 \\ \text{Subject to} & 2x_1 + x_2 \leq 12 \\ & x_1 + 3x_2 \leq 15 \\ & x_1, x_2 \geq 0. \end{array}$

15) Determine the initial basic feasible solution to the following transportation problem using

a) North-West Corner Method

b) Vogel's Approximation Method.

			Supply			
		1	2	3	4	
	1	21	16	15	3	11
Source	2	17	18	14	23	13
	3	32	27	18	41	19
Demand	1.1	6	10	12	15	

- 16) a) Explain Hungarian method for solving assignment problem.
 - b) Find the optimal assignment schedule for given table with cost of each job on each machine.

		Machine						
		W	Х	Υ	Z			
	A	18	24	28	32			
Job	B	8	13	17	18			
	č	10	15	19	22			

1/) The following table gives the list of activities and duration	Т	The	e followin	a table	aives	the	list of	activities	and	duration in hours :	•
---	---	-----	------------	---------	-------	-----	---------	------------	-----	---------------------	---

10

Job	1 – 2	1 – 3	1 – 4	2-5	3 – 4	3 – 7	4 – 5	4 – 6	5 – 6	4 – 7	6 – 7
Duration	20	24	8	20	16	24	0	18	0	4	12

1) Draw the arrow diagram.

2) For each activity calculate early start and early finish time. Latest start and latest finish time.

3) Calculate Total Float (TF) and Free Float (FF).

- 18) a) Explain pay off matrix and strategy.
 - b) Solve the following game. Find the optimal strategy of Player A and Player B.

-3-

		Player B					
		I	11	111			
	1	-3	-2	6]		
Player A	П	2	0	2	1		
	111	5	-2	-4	1		

SECTION - C

- III. Answer any four of the following :
 - 19) Solve the following LPP by simplex method :

Maximize, $z = 3x_1 + 2x_2 + 5x_3$

Subject to $x_1 + 4x_2 \le 420$

$$3x_1 + 2x_3 \le 460$$

$$x_1 + 2x_2 + x_3 \le 430.$$

- 20) a) Explain the steps involved in matrix-minima method.
 - b) Solve the following transportation problem by Least Cost Method.

		Supply			
	10	20	5	7	10
,	13	9	12	8	20
From	4	5	7	9	30
FIOI	14	7	1	0	40
44	3	12	5	19	50
Demand	60	60	20	10	_

- 21) a) Write the difference between transportation problem and assignment problem.
 - b) Solve the transportation problem using MODI method.

		I	11	111	IV	
	A	15	10	17	18	2
From	В	16	13	12	13	6
	С	12	17	20	11	7
		3	3	4	5	

5

5

 $(4 \times 10 = 40)$

10

5 5

> 4 6

UG - 419

22) a) Find the optimal assignment for the following problem :

	Α	в	С	D
w	41	72	39	52
X	22	29	49	65
Y	27	39	60	51
z	45	50	48	52

b) Write the difference between PERT and CPM.

23) a) Explain the different phases of project-scheduling by PERT/CPM.

.

b) Draw the network diagram for the following data :

Job	Predecessor
А	-
В	-
С	А
D	A
Е	B, C
F	А
G	F
H	D, E
1	G, H
J	G, H
К	G, H
L	J, K, L
М	J, K, L
Ν	K, J

24) Use the dominance principle to solve the following game.

Player B

			y1	y ₂	y ₃	У4	У ₅
			B ₁	B_2	B ₃	B_4	B_5
	x ₁	A ₁	4	4	2	- 4	- 6
Player A	x ₂	A_2	8	6	8	- 4	0
	x ₃	A_3	10	2	4	10	12

5

5

5

5

10