11

I Semester B.Sc. Examination, January/February 2025 (NEP) (Repeaters) MATHEMATICS (Major) Algebra – I and Calculus – I

Time: 21/2 Hours

Max. Marks: 60

Instruction: Answer all questions.

PART - A

I. Answer any four questions.

 $(4 \times 2 = 8)$

- 1) Define equivalent matrices.
- 2) Find the angle between the radius vector and the tangent to the curve $r = a (1 + sin\theta)$ at $\theta = \frac{\pi}{6}$.
- 3) State Cauchy's mean value theorem.
- 4) Evaluate $\lim_{x\to 0} \frac{1-\cos x}{x^2}$.
- 5) State Leibnitz theorem.
- 6) Find the nth derivative of e^{2x}sin5x.

PART - B

II. Answer any four questions.

 $(4 \times 5 = 20)$

7) Find the inverse of the following matrices by using elementary transformation.

- 8) Solve the following system of equations x + 2y + 3z = 0, 2x + 3y + 4z = 0, 7x + 13y + 19z = 0.
- 9) With usual notation prove that $\tan \phi = r \frac{d\theta}{dr}$ for the polar curve $r = f(\theta)$.
- 10) Find the angle of intersection of the curves $r = a (1 + \cos\theta)$ and $r = b (1 \cos\theta)$.
- 11) Expand tanx by using Maclaurin's series upto the term containing x4.
- 12) If $y = (x^2 1)^n$, show that $(x^2 1) y_{n+2} + 2xy_{n+1} n(n+1)y_n = 0$.

P.T.O.

PART - C

III. Answer any four questions.

 $(4 \times 8 = 32)$

13) Verify Cayley Hamilton theorem for the following matrice and hence find its inverse.

$$\begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix}$$

- 14) For what values of $\,\lambda$ and μ the following system of equation has
 - 1) No solution
 - 2) Infinite number of solution
 - 3) Unique solution?

$$x + y + z = 6$$
, $x + 2y + 3z = 10$, $x + 2y + \lambda z = \mu$.

15) With usual notations prove that the radius of the curvature of the curve

y=f(x) is
$$\rho = \frac{(1+y_1^2)^{3/2}}{y_2}$$
.

16) Find all the asymptotes of the curve

$$x^3 + x^2y - xy^2 - y^3 + x^2 - y^2 - 2 = 0.$$

- 17) State and prove Rolle's theorem.
- 18) Trace the curve cardioid $r = a(1 + \cos\theta)$.