P.T.O.

 $(4 \times 2 = 8)$

Max. Marks: 60

III Semester B.Sc. Examination, March/April 2023 (NEP) (2022-23 and Onwards) (Freshers)

MATHEMATICS – III (Major)

Ordinary Differential Equations and Real Analysis - I

Time: 21/2 Hours

Instruction : Answer all questions.

PART – A

- I. Answer any four questions.
 - 1) Test for exactness : $(5x^4 + 3x^2y^2 2xy^3) dx + (2x^3y 3x^2y^2 5y^4) dy = 0.$
 - 2) Find the general solution of sinpxcosy = cospxsiny + p.
 - 3) Solve: $\frac{d^4y}{dx^4} 2\frac{d^2y}{dx^2} + y = 0$.
 - 4) Show that $\left\{\frac{3n+5}{2n+1}\right\}$ is monotonic decreasing sequence.
 - 5) Test the convergence of the series $\sum_{n=1}^{\infty} (-1)^n \cdot n$.
 - 6) State Leibnitz test for alternating series.

- II. Answer any four questions.
 - 7) Solve : $xyp^2 (x^2 + y^2) p + xy = 0$.
 - 8) Solve : $y = 2px yp^2$.
 - 9) Solve: $\frac{dx}{x(y-z)} = \frac{dy}{y(z-x)} = \frac{dz}{z(x-y)}$.
 - 10) If sequence $\{a_n\} \to a$ and sequence $\{b_n\} \to b$ as $n \to \infty$, prove that

$$\{a_n b_n\} \rightarrow ab as n \rightarrow \infty.$$

* LIBRARY

 $(4 \times 5 = 20)$

11) Discuss the convergence of the sequence

$$a_n = \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!}$$

12) Find the sum of the series :

$$1 + \frac{1+2}{2!} + \frac{1+2+2^2}{3!} + \dots$$

PART – C

III. Answer any four questions.

- 13) Find the general and singular solution of (px y) (x py) = 2p by using the substitution $x^2 = u$ and $y^2 = v$.
- 14) Solve : $\frac{d^2y}{dx^2} + 9y = \sec 3x$ by the method of variation of parameter.
- 15) Verify the condition for integrability and solve : $3x^2dx + 3y^2dy (x^3 + y^3 + e^{2z}) dz = 0.$
- 16) Show that the sequence $\{x_n\}$ where $x_1 = 1$ and $x_n = \sqrt{2 + x_{n-1}}$ is convergent and converges to 2.
- 17) State and prove Cauchy's root test for the series of positive terms.
- 18) Sum to infinity the series :

$$1 - \frac{3}{5} + \frac{3.5}{5.10} - \frac{3.5.7}{5.10.15} + \dots \infty$$

NP - 194

(4×8=32)