III Semester B.A./B.Sc. Examination, March 2023 (CBCS) (2021-22 and Onwards) (Repeaters)
 MATHEMATICS - III

Time : 3 Hours
Instruction : Answer all questions.
Max. Marks : 70
I. Answer any five questions.

PART - A
a) Find all the left cosets of $\mathrm{H}=\{0,2,4\}$ of the group $\left(\mathrm{Z}_{6},{ }_{6}\right)$.
b) Define cyclic group.
c) Show that the sequence $\left\{\frac{3 n+5}{2 n+1}\right\}$ is monotonically decreasing sequence.
d) Discuss the convergence of the sequence $\left\{\frac{(n+1)^{n+1}}{n^{n}}\right\}$.
e) Examine the convergence of the series $\sum \frac{1}{3 n-1}$.
f) State Raabe's test for convergence of series.
g) Find $L\left\{e^{5 t}+2 e^{-3 t}\right\}$.
h) Find $L^{-1}\left(\frac{5 s}{s^{2}+9}\right)$
PART - B
II. Answer any two questions.
a) If a is any element of the group G, is of order n and e is the identity in G then prove that $a^{n}=e$, for any integer m, if and only if n divides m.
b) Prove that every subgroup of cyclic group is cyclic.
c) State and prove Lagranges theorem.
PART-C
III. Answer any two questions.
a) If $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be two convergent sequence and $\lim _{n \rightarrow \infty} a_{n}=l$ and $\lim _{n \rightarrow \infty} b_{n}=m$, prove that $\lim _{n \rightarrow \infty} a_{n} \cdot b_{n}=l . m$.
b) Discuss the nature of the sequence $\left\{\left(1+\frac{1}{n}\right)^{n}\right\}$.
c) Find the limit of the sequence $0.4,0.44,0.444, \ldots$. .
PART - D
IV. Answer any three questions.
a) Discuss the convergence of the series $\sum \frac{1.3 .5 \ldots(2 n-1)}{2 \cdot 4.6 \ldots .2 n} x^{n}$.
b) State and prove D'Alemberts ratio test for convergence of series of positive terms.
c) Test the convergence of the series $\frac{1}{1.2 .3}+\frac{3}{2.3 .4}+\frac{5}{3.4 .5}+\ldots$.
d) Sum to infinity of the series $\frac{1}{1.3}\left(\frac{1}{2}\right)+\frac{1}{2.3}\left(\frac{1}{2}\right)^{2}+\frac{1}{3.5}\left(\frac{1}{2}\right)^{3}+\ldots .$.
e) Sum to infinity of the series $\sum_{n=1}^{\infty} \frac{3 n^{2}-n+1}{n!}$.
PART - E
V. Answer any three questions.
a) Evaluate $L\{\sin t . \sin 2 t . \sin 3 t\}$.
b) If $L\{f(t)\}=F(S)$, prove that $L\left\{\frac{f(t)}{t}\right\}=\int_{s}^{\infty} F(S)$ ds and hence evaluate $L\left(\frac{\sin t}{t}\right)$.
c) Find the Laplace transform of the function

$$
f(t)=\left\{\begin{array}{cc}
1 & 0<t<\frac{a}{2} \\
-1 & \frac{a}{2}<t<a
\end{array} \text { and } f(t+a)=f(t)\right.
$$

d) Find $L^{-1}\left(\frac{4 s+5}{(s+1)^{2}(s+2)}\right)$.
e) Using Convolution theorem, find the inverse Laplace transform of $\frac{1}{s\left(s^{2}+1\right)}$.
PART - F
VI. Answer any two questions.
$(2 \times 5=10)$
a) A farmer buys a used tractor for Rs. 12,000 . He pays Rs. 6000 cash and agrees to pays the balance in annual installments of Rs. 500 plus 12% interest on the unpaid amount. How much will be the tractor cost him?
b) Solve $\frac{d y}{d t}-5 y=e^{5 t}$, given $y(0)=2$ using Laplace transform.
c) A person plucks 3 flowers on first day, doubles his plucking every day for about a year. If he does the work like this what is the number of flowers he was plucked on $365^{\text {th }}$ day?

