

III Semester B.A./B.Sc. Examination, March 2023 (CBCS) (2021 – 22 and Onwards) (Repeaters) MATHEMATICS – III

Time : 3 Hours

Instruction : Answer all questions.

PART – A

Max. Marks: 70

 $(5 \times 2 = 10)$

- I. Answer any five questions.
 - a) Find all the left cosets of H = {0,2,4} of the group $(Z_{e},+_{e})$.
 - b) Define cyclic group.
 - c) Show that the sequence $\left\{ \frac{3n+5}{2n+1} \right\}$ is monotonically decreasing sequence.
 - d) Discuss the convergence of the sequence $\left\{\frac{(n+1)^{n+1}}{n^n}\right\}$.
 - e) Examine the convergence of the series $\sum \frac{1}{3n-1}$.
 - f) State Raabe's test for convergence of series.
 - g) Find $L\{e^{5t} + 2e^{-3t}\}$
 - h) Find $L^{-1}\left(\frac{5s}{s^2+9}\right)$.

PART – B

II. Answer any two questions.

- a) If a is any element of the group G, is of order n and e is the identity in G then prove that aⁿ=e, for any integer m, if and only if n divides m.
- b) Prove that every subgroup of cyclic group is cyclic.
- c) State and prove Lagranges theorem.

P.T.O.

(2×5=10)

PART – C

III. Answer any two questions.

a) If $\{a_n\}$ and $\{b_n\}$ be two convergent sequence and $\lim_{n\to\infty} a_n = l$ and

 $\lim_{n\to\infty} b_n = m, \text{ prove that } \lim_{n\to\infty} a_n. b_n = l. m.$

- b) Discuss the nature of the sequence $\left\{ \left(1 + \frac{1}{n}\right)^n \right\}$.
- c) Find the limit of the sequence 0.4,0.44,0.444,....

- IV. Answer any three questions.
 - a) Discuss the convergence of the series $\sum \frac{1.3.5...(2n-1)}{2.4.6....2n} x^n$.
 - b) State and prove D'Alemberts ratio test for convergence of series of positive terms.

c) Test the convergence of the series $\frac{1}{1.2.3} + \frac{3}{2.3.4} + \frac{5}{3.4.5} + \dots$

d) Sum to infinity of the series $\frac{1}{1.3} \left(\frac{1}{2}\right) + \frac{1}{2.3} \left(\frac{1}{2}\right)^2 + \frac{1}{3.5} \left(\frac{1}{2}\right)^3 + \dots$

e) Sum to infinity of the series $\sum_{n=1}^{\infty} \frac{3n^2 - n + 1}{n!}$.

- V. Answer any three questions.
 - a) Evaluate L {sint. sin2t. sin3t}.

b) If
$$L\{f(t)\} = F(S)$$
, prove that $L\left\{\frac{f(t)}{t}\right\} = \int_{s}^{\infty} F(S)$ ds and hence evaluate $L\left(\frac{\sin t}{t}\right)$.

 $(3 \times 5 = 15)$

(2×5=10)

 $(2 \times 5 = 10)$

c) Find the Laplace transform of the function

$$f(t) = \begin{cases} 1 & 0 < t < \frac{a}{2} \\ -1 & \frac{a}{2} < t < a \end{cases} \quad \text{and } f(t+a) = f(t).$$

d) Find
$$L^{-1}\left(\frac{4s+5}{(s+1)^2(s+2)}\right)$$
.

e) Using Convolution theorem, find the inverse Laplace transform of $\frac{1}{s(s^2 + 1)}$.

PART – F

- VI. Answer any two questions.
 - a) A farmer buys a used tractor for Rs. 12,000. He pays Rs. 6000 cash and agrees to pays the balance in annual installments of Rs.500 plus 12% interest on the unpaid amount. How much will be the tractor cost him ?
 - b) Solve $\frac{dy}{dt} 5y = e^{5t}$, given y(0) = 2 using Laplace transform.
 - c) A person plucks 3 flowers on first day, doubles his plucking every day for about a year. If he does the work like this what is the number of flowers he was plucked on 365th day ?