

QP – 177

III Semester B.Sc. Examination, March/April 2022 (F+R) (CBCS) (2018-19 and Onwards) STATISTICS (Paper – III) Statistical Inference – I

Time : 3 Hours

Max. Marks: 70

Instructions : i) Answer any ten subdivisions in Section – A and five questions from Section – B. ii) Scientific calculators are allowed.

SECTION - A

 $(10 \times 2 = 20)$

- . Answer any ten sub-divisions from the following :
 - 1) a) What is sampling distribution ?
 - b) Define standard error and mention its uses.
 - c) Given T is an estimator of a parameter θ , then prove that MSE (T) \geq V(T).
 - d) Define consistency and mention the sufficient conditions for consistency.
 - e) Write a note on Fisher's information in terms of expectation.
 - f) State the Cramer-Rao inequality.
 - g) State the properties of moment estimator.
 - h) What is interval estimation ? Explain.
 - i) Write down the confidence interval for μ of N(μ , σ^2).
 - j) Write confidence interval for population correlation coefficient ρ with confidence coefficient (1α) .
 - k) What is meant by Monte Carlo method of simulation?
 - I) Mention the disadvantages of simulation.

P.T.O.

-2-

(5×10=50)

SECTION - B

- II. Answer any five questions from the following :
 - 2) a) Obtain sampling distribution of sample mean \overline{x} , when the random sample of size 'n' is drawn from N(μ , σ_0^2) distribution.
 - b) Derive the moment generating function of chi-square distribution and hence establish additive property. (4+6)
 - a) Obtain the expression for even ordered moments of t-distribution with 'n' degrees of freedom.
 - b) If $F \sim F(n_1, n_2)$ distribution, then prove that $\frac{1}{F} \sim F(n_2, n_1)$ distribution. (5+5)
 - 4) a) Show that sample mean \overline{x} is the unbiased estimator for the population mean μ of N(μ , σ^2).
 - b) Show that the Caushy population $f(x,\mu) = \frac{1}{\pi[1 + (x \mu)^2]}, -\infty \le x \le \infty$ the sample mean is not a consistent estimator, but sample median is a consistent estimator. (4+6)
 - 5) a) Define efficiency. If x_1 , x_2 , x_3 are three independent observations from a population with mean μ and variance σ^2 , if $T_1 = x_1 + x_2 x_3$ and $T_2 = 2x_1 + 3x_2 4x_3$ are two estimates of μ , then
 - i) Which one is unbiased ?
 - ii) Which one is more efficient ?
 - b) Show that $\sum_{i=1}^{n} x_i$ is sufficient estimator of p of B (1, p). (6+4)
 - 6) a) Define sufficiency and state the theorem used to obtain sufficient estimator.
 - b) Derive the Minimum Variance Bound Estimator (MVBE) of μ in N(μ , σ_{\circ}^{2}) distribution and find its variance. (4+6)

7. a) Find the maximum likelihood estimator for the parameter ' θ ' in the distribution with pdf f(x, θ) = $\theta e^{-\theta x}$, x ≥ 0, θ > 0.

-3-

- b) Estimate p in a sampling from binomial population $f(x, n, p) = {}^{n}C_{x} p^{x} q^{n-x}$, x = 0, 1...n by method of moments. (5+5)
- 8. a) Obtain 100 (1α) % C.I. for the mean μ of a normal population N(μ , σ^2).
 - b) Construct confidence interval for the ratio of two variances. (5+5)
- 9. a) Explain the method of generating random samples from N(μ , σ^2) population.
 - b) Explain the method of generating random samples from exponential distribution. (5+5)