لم V Semester B.A./<u>B.Sc</u>. Examination, March/April 2022 (Semester Scheme) (CBCS) (F + R) (2016 – 17 and Onwards) MATHEMATICS (Paper – V)

Time : 3 Hours

Instruction : Answer all questions.

PART – A

- 1. Answer **any five** questions.
 - a) In a ring $(R, +, \cdot)$, show that $a \cdot (-b) = (-a) \cdot b = -(a \cdot b)$ for all $a, b \in R$.
 - b) Define subring of a ring. Give an example.
 - c) Give an example of
 - i) Commutative ring without unity.
 - ii) A non commutative ring without unity.
 - d) If $\phi(x, y, z) = x^2 y^2 z^2$ and $\vec{F} = 2x\hat{i} + y\hat{j} + 3z\hat{k}$ find $\vec{F} \cdot \nabla \phi$.
 - e) Find the unit normal vector to the surface $x^2 y^2 + z = 3$ at the point (1, 0, 2).
 - f) Evaluate : $\Delta^{3}[(1-x)(1-2x)(1-3x)]$.
 - g) Write Lagrange's interpolation formula.
 - h) Evaluate : $\int_{0}^{1} \frac{dx}{1+x}$ using Trapezoidal rule, given

x	0	<u>1</u> 6	$\frac{2}{6}$	$\frac{3}{6}$	$\frac{4}{6}$	$\frac{5}{6}$	1
У	1	0.8571	0.75	0.6667	0.6	0.5455	0.5

PART – B

Answer two full questions.

- a) Prove that every field is an integral domain.
 Is the converse of the above theorem is true ? Justify with example.
 - b) Show that set R = {0, 1, 2, 3, 4, 5} is a commutative ring w.r.t \oplus_6 and \otimes_6 as two compositions.

OR

P.T.O.

 $(2 \times 10 = 20)$

Max. Marks : 70

 $(5 \times 2 = 10)$

QP

QP – 173

- 3. a) Prove that a ring R without zero divisors if and only if the cancellation laws holds.
 - b) Show that necessary and sufficient condition for a non-empty subset S of a ring R to be a subring of R are

-2-

- i) $a b \in S$ ∀a, b∈S ii) ab∈S $\forall a, b \in S.$
- 4. a) Prove that an ideal S of the ring $(z, +, \cdot)$ is maximal if and only if S is generated by some prime integer.
 - b) Find all the principal ideals of the ring R = {0, 1, 2, 3, 4, 5} w.r.t \oplus_{e} and \otimes_{e} OR
- 5. a) If f : $R \rightarrow R'$ be a homomorphism of R into R', then show that Ker f is an ideal of R.
 - b) State and prove fundamental theorem of homomorphism.

PART-C

Answer two full questions.

- 6. a) Find the directional derivative of $\phi(x, y, z) = xyz xy^2z^3$ at the point (1, 2, -1) in the direction of $\hat{i} - \hat{j} - 3\hat{k}$.
 - b) If $\vec{F} = \text{grad}(x^3 + y^3 + z^3 3xyz)$, find div \vec{F} and curl \vec{F} . OR
- 7. a) Find the values of 'a' and 'b' so that the surface $5x^2 2yz 9x = 0$ may cut the surface $ax^2 + by^3 = 4$ orthogonally at (1, -1, 2).
 - b) If ϕ is a scalar point function and F is a vector point function, prove that div $(\phi F) = \phi(\text{div} F) + (\text{grad } \phi) \cdot F$.
- 8. a) If $\vec{u} = x^2 \hat{i} + y^2 \hat{j} + z^2 \hat{k}$ and $\vec{v} = yz \hat{i} + zx \hat{j} + xy \hat{k}$. Show that $\vec{u} \times \vec{v}$ is a solenoidal vector.
 - b) Show that $\vec{F} = (6xy + z^3)\hat{i} + (3x^2 z)\hat{j} + (3xz^2 y)\hat{k}$ is irrotational. Find ϕ such that $\vec{F} = \nabla \phi$. OR
- 9. a) Prove that :
 - i) div(curl \vec{F}) = 0.
 - ii) curl (grad ϕ) = 0.
 - b) For any vector field \vec{f} and \vec{g} prove that div $(\vec{f} \times \vec{g}) = \vec{g}$.curl $\vec{f} \vec{f}$.curl \vec{g} .

 $(2 \times 10 = 20)$

QP – 173

PART – D

Answer any two full questions.

 $(2 \times 10 = 20)$

10. a) Use the method of separation of symbols. Prove that

$$u_{0} + \frac{u_{1}x}{1!} + \frac{u_{2}x^{2}}{2!} + \dots = e^{x} \left[u_{0} + x \frac{\Delta u_{0}}{1!} + x^{2} \frac{\Delta u_{0}}{2!} + \dots \right].$$

b) Obtain the function whose first difference is $6x^2 + 10x + 11$.

OR

11. a) Find a cubic polynomials which takes the following data and hence evaluate f(4).

x	0	1	2	3
f(x)	1	2	1	10

b) Find f(1.4) from the following data using difference table.

X	1	2	3	4	5
f(x)	10	26	58	112	194

12. a) Use Newton divided difference formula and find f(8) from the following data :

x	1	3	6	11
f(x)	4	32	224	1344

b) Evaluate $\int_{0}^{6} \frac{1}{1+x^{2}} dx$ by using Simpson's $\frac{3}{8}^{th}$ rule by taking n = 6.

13. a) By using Lagrange's interpolation formula, find f(6) from the following data :

X	3	1	9	10
f(x)	168	120	72	63

b) Evaluate $\int_{0}^{0.6} e^{-x^2} dx$ by taking 6 subintervals by using Simpson's $\frac{1}{3}^{rd}$ rule.