V Semester B.A./B.Sc. Examination, March/April 2022 (Semester Scheme)

 (CBS) ($\mathrm{F}+\mathrm{R}$) (2016-17 and Onwards)

 (CBS) ($\mathrm{F}+\mathrm{R}$) (2016-17 and Onwards)
 MATHEMATICS (Paper - V)

Time : 3 Hours
Max. Marks : 70
Instruction : Answer all questions.
PART - A

1. Answer any five questions.
a) In a ring $(R,+, \cdot)$, show that $a \cdot(-b)=(-a) \cdot b=-(a \cdot b)$ for all $a, b \in R$.
b) Define subring of a ring. Give an example.
c) Give an example of
i) Commutative ring without unity.
ii) A non commutative ring without unity.
d) If $\phi(x, y, z)=x^{2} y^{2} z^{2}$ and $\vec{F}=2 x \hat{i}+y \hat{j}+3 z \hat{k}$ find $\vec{F} . \nabla \phi$.
e) Find the unit normal vector to the surface $x^{2}-y^{2}+z=3$ at the point ($1,0,2$).
f) Evaluate : $\Delta^{3}[(1-x)(1-2 x)(1-3 x)]$.
g) Write Lagrange's interpolation formula.
h) Evaluate : $\int_{0}^{1} \frac{d x}{1+x}$ using Trapezoidal rule, given

x	0	$\frac{1}{6}$	$\frac{2}{6}$	$\frac{3}{6}$	$\frac{4}{6}$	$\frac{5}{6}$	1
y	1	0.8571	0.75	0.6667	0.6	0.5455	0.5

PART - B
Answer two full questions.
2. a) Prove that every field is an integral domain.

Is the converse of the above theorem is true? Justify with example.
b) Show that set $R=\{0,1,2,3,4,5\}$ is a commutative ring w.r. \oplus_{6} and \otimes_{6} as two compositions.

OR
P.T.O.
3. a) Prove that a ring R without zero divisors if and only if the cancellation laws holds.
b) Show that necessary and sufficient condition for a non-empty subset S of a ring R to be a subring of R are
i) $a-b \in S$
$\forall \mathrm{a}, \mathrm{b} \in \mathrm{S}$
ii) $a b \in S$
$\forall a, b \in S$.
4. a) Prove that an ideal S of the ring $(z,+, \cdot)$ is maximal if and only if S is generated by some prime integer.
b) Find all the principal ideals of the ring $\mathrm{R}=\{0,1,2,3,4,5\}$ w.r.t \oplus_{6} and \otimes_{6} OR
5. a) If $f: R \rightarrow R^{\prime}$ be a homomorphism of R into R^{\prime}, then show that $\operatorname{Kerf} f$ is an ideal of R.
b) State and prove fundamental theorem of homomorphism.
PART - C

Answer two full questions.
6. a) Find the directional derivative of $\phi(x, y, z)=x y z-x y^{2} z^{3}$ at the point $(1,2,-1)$ in the direction of $\hat{i}-\hat{j}-3 \hat{k}$.
b) If $\vec{F}=\operatorname{grad}\left(x^{3}+y^{3}+z^{3}-3 x y z\right)$, find div \vec{F} and curl \vec{F}.

> OR
7. a) Find the values of ' a ' and ' 'b' so that the surface $5 x^{2}-2 y z-9 x=0$ may cut the surface $a x^{2}+$ by $^{3}=4$ orthogonally at $(1,-1,2)$.
b) If ϕ is a scalar point function and $\overrightarrow{\mathrm{F}}$ is a vector point function, prove that $\operatorname{div}(\phi \vec{F})=\phi(\operatorname{div} \vec{F})+(\operatorname{grad} \phi) . \vec{F}$.
8. a) If $\vec{u}=x^{2} \hat{i}+y^{2} \hat{j}+z^{2} \hat{k}$ and $\vec{v}=y z \hat{i}+z x \hat{j}+x y \hat{k}$. Show that $\vec{u} x \vec{v}$ is a solenoidal vector.
b) Show that $\vec{F}=\left(6 x y+z^{3}\right) \hat{i}+\left(3 x^{2}-z\right) \hat{\dot{j}}+\left(3 x z^{2}-y\right) \hat{k}$ is irrotational. Find ϕ such that $\vec{F}=\nabla \phi$.
OR
9. a) Prove that:
i) $\operatorname{div}(\operatorname{curl} \vec{F})=0$.
ii) curl $(\operatorname{grad} \phi)=0$.
b) For any vector field \vec{f} and \vec{g} prove that $\operatorname{div}(\overrightarrow{\mathrm{f}} \times \overrightarrow{\mathrm{g}})=\overrightarrow{\mathrm{g}} . \operatorname{curl} \overrightarrow{\mathrm{f}}-\overrightarrow{\mathrm{f}}$. curl \vec{g}.
PART - D

Answer any two full questions.
10. a) Use the method of separation of symbols. Prove that

$$
\mathrm{u}_{0}+\frac{\mathrm{u}_{1} \mathrm{x}}{1!}+\frac{\mathrm{u}_{2} \mathrm{x}^{2}}{2!}+\ldots . .=\mathrm{e}^{\mathrm{x}}\left[\mathrm{u}_{0}+\mathrm{x} \frac{\Delta \mathrm{u}_{0}}{1!}+\mathrm{x}^{2} \frac{\Delta \mathrm{u}_{0}}{2!}+\ldots\right] .
$$

b) Obtain the function whose first difference is $6 x^{2}+10 x+11$.

OR
11. a) Find a cubic polynomials which takes the following data and hence evaluate $f(4)$.

\mathbf{x}	0	1	2	3
$\mathbf{f}(\mathbf{x})$	1	2	1	10

b) Find $f(1.4)$ from the following data using difference table.

\mathbf{x}	1	2	3	4	5
$\mathbf{f}(\mathbf{x})$	10	26	58	112	194

12. a) Use Newton divided difference formula and find $f(8)$ from the following data :

\mathbf{x}	1	3	6	11
$\mathbf{f}(\mathbf{x})$	4	32	224	1344

b) Evaluate $\int_{0}^{6} \frac{1}{1+x^{2}} d x$ by using Simpson's $\frac{3}{8}^{\text {th }}$ rule by taking $n=6$.

OR
13. a) By using Lagrange's interpolation formula, find $f(6)$ from the following data :

\mathbf{x}	3	7	9	10
$\mathbf{f (x)}$	168	120	72	63

b) Evaluate $\int_{0}^{0.6} e^{-x^{2}} d x$ by taking 6 subintervals by using Simpson's $\frac{1}{3}^{\text {rd }}$ rule.

