50
 V Semester B.A./B.Sc. Examination, March 2023
 (CBCS) (2016-2017 and Onwards) (F+R)
 MATHEMATICS - V

Time : 3 Hours
Instruction : Answer all questions.
PART - A

Max. Marks : 70

1. Answer any five questions :
a) In a ring $(\mathrm{R},+,$.$) show that \mathrm{a} \cdot(-\mathrm{b})=(-\mathrm{a}) \cdot \mathrm{b}=-(\mathrm{a} \cdot \mathrm{b}) \forall \mathrm{a}, \mathrm{b} \in \mathrm{R}$.
b) Define field. Give an example.
c) Prove that every field is a principal ideal ring.
d) Find the divergence of the vector field.

$$
\vec{F}=x^{3} z \hat{i}+y^{3} x \hat{j}+z^{3} y \hat{k} \text { at }(1,1,-1) .
$$

e) Find the maximum directional derivative of $x \sin z-y \cos z$ at $(0,0,0)$.
f) Prove that $E \nabla=\nabla E=\Delta$.
g) Evaluate $\Delta^{10}(1-a x)\left(1-b x^{2}\right)\left(1-c x^{3}\right)\left(1-d x^{4}\right)$.
h) State Simpson's $\frac{3}{8}^{\text {th }}$ rule for the integral $\int_{a}^{b} f(x) d x$.
PART - B

Answer two full questions :
2. a) Prove that the intersection of any two subrings is a subring. Give an example to show that the union of 2 subrings of a ring need not be a subring.
b) Prove that $\left(Z_{5},+_{5}, x_{5}\right)$ is a ring w.r.t. $+_{5}$ and x_{5}.

OR
3. a) Prove that every field is an integral domain.
b) Show that the set of all real numbers of the form $a+b \sqrt{2}$, where a and b are integers is a ring w.r.t. addition and multiplication.
4. a) If $f: R \rightarrow R^{\prime}$ be a homomorphism and onto then prove that f is one-one iff $\operatorname{ker} f=\{0\}$.
b) Prove that the set $S=\left\{\left(\begin{array}{ll}a & 0 \\ b & 0\end{array}\right) / a, b \in Z\right\}$ of all 2×2 matrices is a left ideal of the ring R over Z. Also show that S is not a right ideal.

OR
5. a) State and prove fundamental theorem of homomorphism of rings.
b) Find all the principal ideals of the ring $R=\{0,1,2,3,4,5,6,7\}$ w.r.t. \oplus_{8} and \otimes_{8}.
PART - C

Answer any two full questions :
6. a) Find the directional derivative of $\phi(x, y, z)=x^{2}-y^{2}+4 z^{2}$ at the point $(1,1,-8)$ in the direction of $2 \hat{i}+\hat{\mathrm{j}}-\hat{\mathrm{k}}$.
b) Find the angle between the surfaces $x^{2}+y^{2}+z^{2}=9$ and $x^{2}+y^{2}+z^{2}=3$ at the point $(2,-1,2)$.

OR
7. a) Prove that $\nabla^{2} r^{n}=n(n+1) r^{n-2}$ where n is a non zero constant. Also deduce that r^{n} is harmonic if $n=-1$.
b) If the vector $\vec{F}=(a x+3 y+4 z) \hat{i}+(x-2 y+3 z) \hat{j}+(3 x+2 y-z) \hat{k}$ is solenoidal then find a .
8. a) If ϕ is a scalar point function and \vec{F} is a vector point function. Then prove that $\operatorname{div}(\phi \vec{F})=\phi(\operatorname{div} \vec{F})+\nabla \phi \cdot \vec{F}$.
b) Show that $\vec{F}=\left(6 x y+z^{3}\right) \hat{i}+\left(3 x^{2}-z\right) \hat{j}+\left(3 x z^{2}-y\right) \hat{k}$ is irrotational, find ϕ such that $\vec{F}=\nabla \phi$.
9. a) Prove that

1) curl \vec{F} is solenoidal
2) $\operatorname{grad} \phi$ is irrotational.
b) Prove that $\nabla^{2} f(r)=f^{\prime \prime}(r)+\frac{2}{r} f^{\prime}(r)$ where $r^{2}=x^{2}+y^{2}+z^{2}$.
PART - D

Answer two full questions :
10. a) By the separation of symbols, prove that

$$
u_{0}+\frac{u_{1}}{1!}+\frac{u_{2} x^{2}}{2!}+\ldots \infty=e^{x}\left[u_{0}+\frac{x \Delta u_{0}}{1!}+\frac{x^{2} \Delta^{2} u_{0}}{2!}+\ldots \infty\right] .
$$

b) Obtain the function whose first difference is $6 x^{2}+10 x+11$.

OR
11. a) From the following data find θ at $x=84$ using difference table.

\mathbf{x}	40	50	60	70	80	90
θ	184	204	226	250	276	304

b) Express $3 x^{3}-4 x^{2}+3 x-11$ in factorial notation. Also express its successive difference in factorial notation.
12. a) Prepare divided difference table for the following data.

\mathbf{x}	1	3	4	6	10
$\mathbf{f}(\mathbf{x})$	0	18	58	190	920

b) Evaluate $\int_{0}^{6} \frac{1}{1+\mathrm{x}^{2}} d x$ by using Simpson's $\frac{3^{\text {th }}}{8}$ rule.

OR
13. a) By using Lagrange's Interpolation formula, find $f(10)$ from the following data.

\mathbf{x}	5	6	9	11
$\mathbf{f}(\mathbf{x})$	12	13	14	16

b) Evaluate $\int_{0}^{0.6} e^{-x^{2}} d x$ by taking 6 sub intervals by using Simpson's $\frac{1}{3}^{\text {rd }}$ rule.

