CS - 167

53

V Semester B.A./B.Sc. Examination, March 2023
 (CBCS) (2016-17 and Onwards) (F+R)

MATHEMATICS (Paper - VI)

Time : 3 Hours

Instruction : Answer all questions.

PART - A

Max. Marks : 70

1. Answer any 5 questions.
a) Define geodesic on a surface.
b) Find the function y which makes the integral $I=\int_{x_{1}}^{x_{2}}\left(1+x y^{\prime}+x y^{\prime 2}\right) d x$ an extremum:
c) Find the Euler's equation when f does not contain ' y ' explicitly.
d) Evaluate $\int_{c}(3 x+y) d x+(2 y-x) d y$ along $y=x$ from $(0,0)$ to $(10,10)$.
e) Evaluate $\int_{0}^{a} \int_{0}^{b}\left(x^{2}+y^{2}\right) d x d y$.
f) Evaluate $\int_{0}^{1} \int_{0}^{x} \int_{0}^{z} d y d z d x$.
g) State stoke's theorem.
h) Find the area of the circle $x^{2}+y^{2}=a^{2}$ by double integration.
PART - B

Answer two full questions.
2. a) Derive the Euler's equations in the form $\frac{\partial f}{\partial y}-\frac{d}{d x}\left(\frac{\partial f}{\partial y^{\prime}}\right)=0$.
b) Find the extremal of the functional $\left.\int_{x_{1}}^{x_{2}} y^{\prime 2}-y^{2}+2 y \sec x\right) d x$. OR
3. a) Find the Geodesics on a surface given that the arc length on the surface $S=\int_{x_{1}}^{x_{2}} \sqrt{x\left(1+y^{\prime 2}\right)} d x$.
b) Find the path in which a particle in the absence of friction will slide from one point to another in the shortest time under the action of gravity.
4. a) Find the shape of a chain which hangs under gravity between two fixed points.
b) Find the extremal of the functional $\int_{0}^{1}\left(y^{\prime 2}+x^{2}\right) d x$ subject to the constraint $\int_{0}^{1} y d x=2$ and having the conditions $y(0)=0, y(1)=1$.

OR
5. a) Find the extremal of the integral $I=\int_{0}^{1} y^{\prime 2} d x$ subject to the constraint $\int_{0}^{1} y d x=1$ and having $y(0)=0, y(1)=1$.
b) Find the equation of the curve which joins the points $(0,1)$ and $(2,3)$ and along which the integral $\int_{0}^{2} \frac{\sqrt{1+\mathrm{y}^{\prime 2}}}{\mathrm{y}} \mathrm{dx}$ is a minimum.

PART - C
Answer two full questions.
6. a) Compute $\int_{c} x d x-y d x$ around the square $(0,0),(1,0),(1,1),(0,1)$.
b) Evaluate $\iint_{c} x y(x+y) d x d y$ over the region R bounded between the parabola $y=x^{2}$ and the line $y=x$.

OR
7. a) Change the order of integration in $\int_{0}^{a} \int_{0}^{2 \sqrt{a x}} x^{2} d x d y$ and hence evaluate.
b) Find the area of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ by double integration.
8. a) Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{1-x^{2}-y^{2}}} x y z d z d y d x$.
b) Evaluate $\int_{0}^{2 a} \int_{0}^{\sqrt{2 a x-x^{2}}} x^{2} d y d x$ by changing to polar coordinates.

OR
9. a) Find the value of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ using triple integrations.
b) Evaluate $\iiint_{R} x y z d x d y d z$ over the positive octant of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$. by transforming into cylindrical polar co-ordinates.

PART - D

Answer any two full questions.

$(2 \times 10=20)$
10. a) State and prove Green's theorem.
b) Using divergence theorem, evaluate $\iint \vec{F}$.nds where $\vec{F}=4 x \hat{i}-2 y^{2} \hat{j}+x^{2} \hat{k}$ and S is the surface enclosing the region for which $\mathrm{x}^{2}+\mathrm{y}^{2} \leq 4$ and $0 \leq \mathrm{z} \leq 3$.

OR
11. a) Using divergence theorem evaluate $\iint_{s}\left(x \hat{i}+y \hat{j}+z^{2} \hat{k}\right)$.ñds where s is the closed surface bounded by the cone $x^{2}+y^{2}=z^{2}$ and the plane $z=1$
b) Using Green's theorem evaluate $\int_{c} e^{-x} \sin y d x+e^{-x} \cos y d y$ where C is the rectangle with the vertices $(0,0),(0, \pi / 2)(\pi, \pi / 2),(\pi, 0)$.
12. a) Verify stoke's theorem for the function $\vec{F}=y^{2} \hat{i}+x y \hat{j}-x z \hat{k}$ where S is the hemisphere $x^{2}+y^{2}+z^{2}=a^{2}, z \geq 0$.
b) State and prove Gauss-divergence theorem.

OR
13. a) Using Green's theorem evaluate $\int_{c}\left(x y+y^{2}\right) d x+x^{2} d y$ where C is the closed curve bounded by $y=x$ and $y=x^{2}$.
b) Evaluate by Stoke's theorem $\int_{C} \sin z d x-\cos x d y+\sin y d z$, where ' C ' is the boundary of the rectangle $0 \leq x \leq \pi, 0 \leq y \leq 1, z=3$

