31.

V Semester B.Sc. Examination, Jan./Feb. 2025 (NEP) (Freshers/Repeaters) MATHEMATICS (Major)

Paper - 5.2: Vector Calculus and Analytical Geometry

Time: 21/2 Hours

Max. Marks: 60

Instruction: Answer all questions.

PART - A

I. Answer any ten questions:

 $(10 \times 2 = 20)$

- 1) If $\vec{r} = 3t^2 + 2t + 1$, find $\left| \frac{d^2 \vec{r}}{dt^2} \right|$ at t = 1.
- 2) If $\vec{F} = (ax + 3y + 4z) \hat{i} + (x 2y + 3z) \hat{j} + (3x + 2y z) \hat{k}$ is solenoidal. Find 'a'.
- 3) Find the maximum directional derivative of $\phi = 4x^3y^2z$ at the point (1, -2, 4).
- 4) State Gauss divergence theorem.
- 5) Write vector form of Green's theorem.
- 6) Evaluate by Stoke's theorem $\oint_C [yzdx + zxdy + xydz]$ where C is the curve $x^2 + y^2 = 1$, $z = y^2$.
- 7) Find the angle between the planes 2x + 4y 6z = 1 and 3x + 6y + 5z + 4 = 0.
- 8) Find the equation of the line passing through the point (1, 1, 1) and (2, 3, 4).
- 9) Find the equation of the plane containing the point (2, 1, 1) and the line $\frac{x+1}{2} = \frac{y-2}{3} = \frac{z+1}{-1}$
- 10) Find the equation of the sphere whose ends of the diameters are (1, 1, 2) and (2, 1, 2).
- 11) Define the pole and polar plane.
- 12) Find the centre and radius of the sphere $x^2 + y^2 + z^2 6x 8y 2z 1 = 0$.

PART - B

II. Answer any two questions:

 $(2 \times 5 = 10)$

- 13) Find the directional derivative of $\phi = xy^2 + yz^3$ at the point (2, -1, 1) in the direction of the vector $\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 2\hat{\mathbf{k}}$.
- 14) Show that $\vec{F} = (6xy + z^3) \hat{i} + (3x^2 z) \hat{j} + (3xz^2 y) \hat{k}$ is irrotational. Also find ϕ such that $\nabla \phi = \vec{F}$.
- 15) If $\vec{F} = x^3 + y^3 + z^3 3xyz$, find div \vec{F} and curl \vec{F} at the point (1, 1, 1).
- 16) Prove that
 - i) $\nabla \times (\nabla \phi) = 0$.
 - ii) $\nabla \cdot (\nabla \times \vec{\mathsf{F}}) = 0$.

PART - C

III. Answer any two questions :

 $(2 \times 5 = 10)$

- 17) State and prove Green's theorem.
- 18) By using Green's theorem, evaluate $\oint_C (3x y) dx + (2x + y) dy$, where C is the circle $x^2 + y^2 = a^2$.
- 19) Using Gauss divergence theorem to evaluate $\iint_s \vec{F} \cdot \hat{n} \, ds$, where $\vec{F} = (x^2 y^2) \, \hat{i} + (y^2 zx) \, \hat{j} + (z^2 xy) \, \hat{k} \, \text{ over the rectangular parallelopiped}$ $0 \le x \le a, \, 0 \le y \le b, \, 0 \le z \le c.$
- 20) Evaluate by Stoke's theorem $\oint_C [(y-z+2) dx + (yz+4) dy xzdz]$ and C is the boundary of the cube $0 \le x \le 2$, $0 \le y \le 2$, $0 \le z \le 2$.

PART - D

IV. Answer any two questions:

 $(2 \times 5 = 10)$

- 21) Find the equation of the plane which bisects the angle between the plane 3x 4y + 5z 3 = 0 and 5x + 3y 4z 9 = 0.
- 22) Find the image of the point (1, 2, 3) in the line $\frac{x+1}{2} = \frac{y-3}{3} = -z$.
- 23) Find the angle between the line $\frac{x-3}{2} = \frac{y+1}{-1} = \frac{z+3}{3}$ and the plane 2x + 3y z 4 = 0.
- 24) Find the equation of the sphere passing through the points (1, 0, 0), (0, 1, 0), (0, 0, 1) and having its centre on the plane x + 2y 3z 4 = 0.

PART - E

V. Answer any two questions:

 $(2 \times 5 = 10)$

- 25) Derive the equation of the right circular cone in its standard form $x^2 + y^2 = z^2 \tan^2 \alpha$.
- 26) Find the equation of the right circular cone whose vertex is (2, 3, 5), axis makes equal angles with the coordinate axes and the semivertical angle is $\cos^{-1}\left(\frac{\sqrt{2}}{3}\right)$.
- 27) Explain the equation of ellipsoid with properties.
- 28) Find the equation of a cylinder whose generators touch the sphere $x^2 + y^2 + z^2 = 9$ and having its generator parallel to the line $\frac{x-1}{2} = \frac{y+3}{-1} = \frac{z-3}{5}$.