II Semester B.Sc. Examination, September/October 2022 (NEP – 2021-22 and Onwards) COMPUTER SCIENCE Paper – II : Data Structures

Time : 21/2 Hours

Max. Marks: 60

Instruction : Answer any four questions from each Part.

PART – A

I. Answer any four questions. Each question carries two marks.

- 1) Define abstract data type. Give an example.
- 2) What is a sparse matrix ?
- 3) Define garbage collection.

4) What is a binary search tree ?

- 5) Define AVL tree.
- 6) Define hash function.

PART – B

II. Answer any four questions. Each question carries five marks.	(4×5=20)
7) Explain the various asymptotic notations for complexity of algorithm $\frac{3}{4}$	n. 5
8) Write an algorithm to insert an element into an array at a given pos	sition. 5
9) Write a C program for tower of Hanoi problem.	5
10) Explain topological sorting.	5
11) Explain how to build a binary search tree with an example.	5
12) Explain various tree traversal methods with suitable examples.	5

P.T.O.

NP - 120

(4×2=8)

NP – 120

PART – C

III. Answer any fo	our questions. Each question carries eight marks.	(4×8=32)
13) a) Explain	any four string operations.	4
b) Explain	the four operations performed on primitive data structu	re. 4
, ,	queue. Explain its types. push and pop operations of stack.	5 3
, ,	inked list. Write an algorithm to insert an element at the linked list.	e end of 6
b) Write ar	ry two applications of stack.	2
	sequential representation of graph in memory. collision resolution by chaining.	4 4
17) Explain sh	ell sort for the given elements 18, 32, 14, 9, 45, 6, 55, 1	6. 8
18) Write an al an example	gorithm to implement binary search technique in an arr e.	ay with 8

 Construction of the second se Second sec second sec

1

ł

di

ſ

S . 10