

27

IV Semester B.Sc. Examination, Sept./Oct. 2022 (CBCS) (F+R) (2018-2019 and Onwards) STATISTICS – IV

Statistical Inference - II

Time: 3 Hours

Max. Marks: 70

Instructions: 1) Answer any 10 subdivisions from Section – A and any five questions from Section – B.

2) Scientific calculators are allowed.

SECTION - A

1. Answer any 10 subdivisions of the following :

 $(10 \times 2 = 20)$

- a) Define best critical region.
- b) State Neymann-Pearson lemma.
- c) Write the test statistic for testing equality of proportions.
- d) Give the test statistic for testing single mean for large samples.
- e) What is the test statistic for paired 't' test with appropriate degrees of freedom?
- f) Define Chi-square test. What are its applications?
- g) Distinguish between parametric and non parametric test (mention any two).
- h) Define Mann-Whitney 'U' statistic.
- i) Mention sign test statistic for one sample.
- j) Define run and length of run.
- k) Write the test statistic used in Spearmans rank correlation coefficient in non-parametric test.
- I) What is the meaning of sequential analysis?

SECTION - B

Answer any five questions from the following:

 $(5 \times 10 = 50)$

- 2. a) A sample of size 10 is taken from a normal distribution with variance 2.5. The critical region for testing. H_0 : μ = 25 vs H_1 : μ = 27.5 is such that mean of the sample is greater than 25.8.
 - Calculate size and power of the test.
 - b) What do you mean by uniformly most powerful test?

(8+2)

- 3. a) Find the most powerful test for testing $H_0: \lambda = \lambda_0$ vs $H_1: \lambda = \lambda_1 (> \lambda_0)$ based on sample observations from a Poisson distribution.
 - b) Find most powerful test of level ' α ' for testing $H_0: \theta = \theta_0$ vs $H_1: \theta = \theta_1$ (where $\theta_1 > \theta_0$) in $f(x, \theta) = \theta e^{-\theta x} x > 0$. (5+5)
- 4. a) Describe the large sample test procedure for testing H_0 : $\mu_1 = \mu_2$ vs H_1 : $\mu_1 \neq \mu_2$ where μ_1 and μ_2 are population means of normal populations.
 - b) Explain the test procedure for testing H_0 : $P = P_0$ vs H_1 : $P \neq P_0$ where P is the Binomial population proportions. (5+5)
- 5. a) Describe Chi-square test for testing $H_0: \sigma^2 = \sigma_0^2$ vs $H_1: \sigma^2 \neq \sigma_0^2$ where σ^2 is the population variance $N(\mu, \sigma^2)$ distribution.
 - b) Discuss 'F' test for testing multiple correlation coefficient.

(5+5)

- a) State the conditions for the validity of Chi-square test for goodness of fit. Also describe Chi-square test of goodness of fit.
 - b) Describe the test procedure for testing regression coefficient.

(6+4)

- 7. a) Explain Fisher z transformation for testing H_0 : $\rho = \rho_0$ where ρ is the population correlation coefficient.
 - b) Explain the Chi-square test for independence of attributes.

(5+5)

- 8. a) Describe Wilcoxon signed rank test for paired samples.
 - b) Explain median test.

(5+5)

- 9. a) What is sequential probability ratio test?
 - b) Derive the SPRT for testing H_0 : $\mu = \mu_0$ vs H_1 : $\mu = \mu_1 (> \mu_0)$ in N (μ, σ^2) distribution $(\sigma^2$ known). (4+6)