28
 IV Semester B.A./B.Sc. Examination, Sept./Oct. 2022 (Semester Scheme) (CBCS) (2021-22 and Onwards) (F+R) MATHEMATICS - IV

Time: 3 Hours

Max. Marks : 70

Instruction : Answer all Parts.
PART - A

1. Answer any five questions.
a) Define Isomorphism of groups.
b) Prove that every subgroup of an abelian group is normal.
c) Define Fourier series.
d) Verify Rolle's theorem for $f(x)=x^{2}-6 x+8$ in [2, 4].
e) Evaluate : $\lim _{x \rightarrow 0}\left(\frac{1-\cos x}{x^{2}}\right)$.
f) Show that $f(x, y)=x^{3}+y^{3}-3 x y+1$ is minimum at the point $(1,1)$.
g) Solve $\frac{d^{2} y}{d x^{2}}-7 \frac{d y}{d x}+6 y=0$.
h) Find the particular integral of $\left(D^{3}+D^{2}+D+1\right) y=e^{3 x+4}$.
PART - B
2. Answer any two questions.
a) Prove that a subgroup H of a group G is normal if and only if $\mathrm{ghg}^{-1} \in \mathrm{H}$, $\forall \mathrm{g} \in \mathrm{G}$.
b) Prove that a subgroup H of a group G is normal if and only if every right coset of H in G is a left coset of H in G .
c) State and prove Fundamental theorem of Homomorphism.
3. Answer any two questions.
a) Obtain the Fourier series for $f(x)=x^{2}$ in $-\pi<x<\pi$ and hence deduce that $\frac{\pi^{2}}{12}=\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\ldots$
b) Find the Fourier series for the function

$$
f(x)=\left\{\begin{array}{lc}
x+\pi / 2, & -\pi<x<0 \\
\pi / 2-x, & 0 \leq x<\pi
\end{array}\right.
$$

c) Find the half range sine series for $f(x)=2 x-1$ over $(0,2)$.
PART - D
4. Answer any three questions.
a) Examine the differentiability of

$$
f(x)=\left\{\begin{array}{cc}
x^{2}-1 & \text { for } x \geq 1 \\
1-x & \text { for } x<1
\end{array} \text { at } x=1\right.
$$

b) State and prove Cauchy's mean value theorem.
c) Evaluate :
i) $\lim _{x \rightarrow 0} \log _{\sin x} \sin 2 x$
ii) $\lim _{x \rightarrow 0}(\cos x)^{1 / x^{2}}$.
d) Obtain Maclaurin's expansion of the function $e^{\sin x}$.
e) Find the extreme values of the function

$$
f(x, y)=x^{3}+y^{3}-3 x-12 y+20
$$

PART - E
5. Answer any three questions.
a) Solve $y^{\prime \prime}+3 y^{\prime}+2 y=\cos ^{2} x$.
b) Solve $\left(D^{2}-3 D+2\right) y=e^{x} \sin x$.
c) Solve $x^{2} D^{2}-2 x(x+1) D+2(x+1) y=x^{3}$ given that x is a part of complementary function.
d) Solve $\cos x y^{\prime \prime}+\sin x y^{\prime}-2 \cos ^{2} x y=2 \cos ^{5} x$.
e) Solve $\frac{d^{2} y}{d x^{2}}+y=\sec x$ by the method of variation of parameters.
PART - F
6. Answer any two questions.
a) Sketch the graph of triangular wave and explain it.
b) Find the Fourier series representing $f(x)=x, 0<x<2 \pi$ and sketch its graphs from $x=-4 \pi$ to $x=4 \pi$.
c) Sketch the graph of output voltage in Half-wave rectifier and explain it.

