IV Semester B.A./B.Sc. Examination, September/October 2022 (Semester Scheme) (CBCS) (F+R) (2015 – 16 and Onwards) MATHEMATICS (Paper – IV)

Time: 3 Hours

Max. Marks: 70

Instruction: Answer all Parts.

PART - A

 $(5 \times 2 = 10)$

- a) Define homomorphism and isomorphism of a group.
- b) Define centre of a group.
- c) Write the formula for b_n of Fourier sine series expansion.
- d) Find the critical points of the function $f(x, y) = 2x^2 xy + y^2 + 7x$.
- e) Find $L^{-1} \left\{ \frac{5s}{s^2 + 9} \right\}$.
- f) Find L{e^{3t} sin5t}.

g) Solve
$$\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 8y = 0$$
.

h) Find the complementary function of $(D^2 - 4)y = 0$.

PART - B

Answer any one full question:

 $(1 \times 15 = 15)$

- 2. a) Show that a subgroup H of a group G is normal subgroup iff $gHg^{-1} = H$, $\forall g \in G$.
 - b) Let $f: G \to G'$ be a homomorphism from the group G into G' with Kernel K, then show that f is one-one if and only if $K = \{e\}$ where e is the identity element of G.
 - c) Prove that the centre of a group G is normal subgroup of G.

OR

- 3. a) State and prove fundamental theorem of homomorphism.
 - b) Prove that every group of a cyclic group is cyclic.
 - c) If f: G → G be a homomorphism of a group G into itself and H is a cyclic subgroup of G then prove that f(H) is also cyclic.

PART - C

Answer any two full questions:

 $(2 \times 15 = 30)$

- 4. a) Obtain the Fourier series for the function $f(x) = x^2$ over the interval $(-\pi, \pi)$.
 - b) Obtain the half range cosine series for f(x) = x in the interval $0 < x < \pi$.
 - c) Expand eaxcosby in Taylor's series upto second degree terms about the origin.

OR

- 5. a) Find the extreme value of the function $f(x, y) = x^3 + y^3 3x 12y + 20$.
 - b) A rectangular box, open at the top, is to have a volume of 32 cubic units, find the dimensions so that the total surface is a minimum.
 - c) Obtain the half range Fourier sine series of $f(x) = (x 1)^2$ in the interval (0, 1).
- 6. a) Find L{sint sin2t sin3t}.
 - b) Find the Laplace transform of the function $(3t^2 + 4t + 5) (t 3)$.

c) Find
$$L^{-1} \left\{ \frac{1}{s(s+1)(s+2)} \right\}$$
.

7. a) Find
$$L\left\{\frac{\cos 2t - \sin 3t}{t}\right\}$$
.

- b) Verify convolution theorem for the function f(t) = sint, $g(t) = e^{-t}$.
- c) Find L⁻¹ $\left[log \left(\frac{s^2 + 1}{s(s+1)} \right) \right]$.

PART - D

Answer any one full question:

 $(1 \times 15 = 15)$

- 8. a) Solve $(D^2 2D + 1)y = \sinh x$.
 - b) Solve $(D^2 + 4)y = \sin^2 x$.
 - c) Solve $(D^2 + D 6)y = x$.

OR

- 9. a) Solve $(D^2 2D + 4)y = e^x \cos x$.
 - b) Solve $\frac{dy}{dt} = 3x y$; $\frac{dy}{dt} = x + y$.
 - c) Solve $x \frac{d^2y}{dx^2} \frac{dy}{dx} 4x^3y = 8x^3 \sin(x^2)$ using the transformation $z = x^2$.