IV Semester B.A./B.Sc. Examination, September/October 2022
 (Semester Scheme)
 (CBCS) (F+R) (2015-16 and Onwards)
 MATHEMATICS (Paper - IV)

Time: 3 Hours
Max. Marks : 70
Instruction : Answer all Parts.
PART - A

1. Answer any five questions :

a) Define homomorphism and isomorphism of a group.
b) Define centre of a group.
c) Write the formula for b_{n} of Fourier sine series expansion.
d) Find the critical points of the function
$f(x, y)=2 x^{2}-x y+y^{2}+7 x$.
e) Find $L^{-1}\left\{\frac{5 s}{s^{2}+9}\right\}$.
f) Find $\mathrm{L}\left\{\mathrm{e}^{3 t} \sin 5 \mathrm{t}\right\}$.
g) Solve $\frac{d^{2} y}{d x^{2}}-6 \frac{d y}{d x}+8 y=0$.
h) Find the complementary function of $\left(D^{2}-4\right) y=0$.
PART - B

Answer any one full question :
2. a) Show that a subgroup H of a group G is normal subgroup iff $\mathrm{gHg}^{-1}=\mathrm{H}$, $\forall \mathrm{g} \in \mathrm{G}$.
b) Let $\mathrm{f}: \mathrm{G} \rightarrow \mathrm{G}^{\prime}$ be a homomorphism from the group G into G^{\prime} with Kernel K, then show that f is one-one if and only if $K=\{e\}$ where e is the identity element of G .
c) Prove that the centre of a group G is normal subgroup of G.
3. a) State and prove fundamental theorem of homomorphism.
b) Prove that every group of a cyclic group is cyclic.
c) If $f: G \rightarrow G$ be a homomorphism of a group G into itself and H is a cyclic subgroup of G then prove that $f(H)$ is also cyclic.

PART - C

Answer any two full questions :
4. a) Obtain the Fourier series for the function $f(x)=x^{2}$ over the interval $(-\pi, \pi)$.
b) Obtain the half range cosine series for $f(x)=x$ in the interval $0<x<\pi$.
c) Expand e^{ax} cosby in Taylor's series upto second degree terms about the origin.

> OR
5. a) Find the extreme value of the function $f(x, y)=x^{3}+y^{3}-3 x-12 y+20$.
b) A rectangular box, open at the top, is to have a volume of 32 cubic units, find the dimensions so that the total surface is a minimum.
c) Obtain the half range Fourier sine series of $f(x)=(x-1)^{2}$ in the interval $(0,1)$.
6. a) Find $L\{\sin t \sin 2 t \sin 3 t\}$.
b) Find the Laplace transform of the function $\left(3 t^{2}+4 t+5\right)(t-3)$.
c) Find $L^{-1}\left\{\frac{1}{s(s+1)(s+2)}\right\}$.
${ }_{4}$ OR
7. a) Find $L\left\{\frac{\cos 2 t-\sin 3 t}{t}\right\}$.
b) Verify convolution theorem for the function $f(t)=$ sint, $g(t)=e^{-t}$.
c) Find $L^{-1}\left[\log \left(\frac{s^{2}+1}{s(s+1)}\right)\right]$.

PART - D

Answer any one full question :
8. a) Solve $\left(D^{2}-2 D+1\right) y=\sinh x$.
b) Solve $\left(D^{2}+4\right) y=\sin ^{2} x$.
c) Solve $\left(D^{2}+D-6\right) y=x$.

OR
9. a) Solve $\left(D^{2}-2 D+4\right) y=e^{x} \cos x$.
b) Solve $\frac{d y}{d t}=3 x-y ; \quad \frac{d y}{d t}=x+y$.
c) Solve $x \frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}-4 x^{3} y=8 x^{3} \sin \left(x^{2}\right)$ using the transformation $z=x^{2}$.

