VI Semester B.A./B.Sc. Examination, September/October 2022
 (Semester Scheme)
 (CBCS) (F+R) (2016-17 and Onwards)
 MATHEMATICS - VII

Time : 3 Hours
Max. Marks : 70
Instruction : Answer all Parts.
PART - A
Answer any five questions.

1. a) In a vector space V over the field F, show that
$(-C) \alpha=-(C \alpha), \quad \forall \alpha \in V, \quad C \in F$.
b) Prove that the subset $W=\left\{\left(x_{1}, x_{2}, x_{3}\right) / x_{1}+x_{2}+x_{3}=0\right\}$ of the vector space $V_{3}(R)$ is a subspace of $V_{3}(R)$.
c) Show that $T: V_{2}(R) \rightarrow V_{2}(R)$ defined by $T(x, y)=(x+y, x-y)$ is a linear transformation.
d) Define range space and null space of linear transformation.
e) Write scalar factors in cylindrical co-ordinate system.
f) Solve : $\frac{d x}{z^{2} y}=\frac{d y}{z^{2} x}=\frac{d z}{x y^{2}}$.
g) Form a partial differential equation by eliminating the arbitrary constants from $z=(x+a)(y+b)$.
h) Solve $p^{2}+q^{2}=3$.
PART - B

Answer two full questions.
2. a) Prove that the intersection of any two subspaces of a vector space $V(F)$ is also a subspace of V . But the union of two subspace of vector space $\mathrm{V}(\mathrm{F})$ need not be a subspace of V . Justify.
b) State and prove the necessary and sufficient condition for a non-empty subset W of a vector space $V(F)$ to be a subspace of V.
3. a) A set of non-zero vectors $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$ of vector space $V(F)$ is linearly dependent if and only if one of vectors say $\alpha_{k}(2 \leq k \leq n)$ is expressed as a linear combination of its preceding ones.
b) Find the dimension and basis of the subspace spanned by the vectors $(2,-3,1),(3,0,1),(0,2,1),(1,1,1)$ of $V_{3}(R)$.
4. a) Find the linear transformation $T: V_{2}(R) \rightarrow V_{3}(R)$ such that $T(-1,1)=(-1,0,2)$ and $T(2,1)=(1,2,1)$.
b) Find the linear transformation for the matrix $A=\left[\begin{array}{rr}-1 & 0 \\ 2 & 0 \\ 1 & 3\end{array}\right]$ with respect to the bases $B_{1}=\{(1,2,0),(0,-1,0),(1,-1,1)\}$ and $B_{2}=\{(1,0),(2,-1)\}$ OR
5. a) State and prove rank-nullity theorem.
b) Find the linear transformation $T: R^{3} \rightarrow R^{3}$ defined by $T\left(e_{1}\right)=e_{1}-e_{2}$, $T\left(e_{2}\right)=2 e_{1}+e_{3}, T\left(e_{3}\right)=e_{1}+e_{2}+e_{3}$. Also find the range space, null space, rank and nullity of T.
PART - C

Answer two full questions.
6. a) Verify the condition for integrability and solve

$$
3 x^{2} d x+3 y^{2} d y-\left(x^{3}+y^{3}+e^{2 z}\right) d z=0
$$

b) Solve $x^{2}(y-z) p+y^{2}(z-x) q=z^{2}(x-y)$.

OR

7. a) Show that the spherical co-ordinate system is orthogonal curvilinear co-ordinate system.
b) Express vector $\vec{f}=2 y \hat{i}-z \hat{j}+3 x \hat{k}$ in cylindrical co-ordinates and find f_{ρ}, f_{ϕ} and f_{z}.
8. a) Solve : $\frac{d x}{m z-n y}=\frac{d y}{n x-l z}=\frac{d z}{l y-m x}$.
b) Solve : $\frac{d x}{x(y-z)}=\frac{d y}{y(z-x)}=\frac{d z}{z(x-y)}$

OR
9. a) Express $\vec{f}=2 x \hat{i}-2 y^{2} \hat{j}+x z \hat{k}$ in cylindrical co-ordinates system and find f_{p}, f_{ϕ}, f_{z}.
b) Express the vector $\vec{f}=z \hat{i}-2 x \hat{j}+y \hat{k}$ in terms of spherical polar co-ordinates and find $f_{r}, f_{\theta}, f_{\phi}$.
PART - D

Answer two full questions.
10. a) Form the partial differential equation given that $f\left(x+y+z, x^{2}-y^{2}-z^{2}\right)=0$.
b) Solve $x(1+y) p=y(1+x) q$.

> OR
11. a) Solve $\left(D^{2}+D D^{\prime}-6 D^{2}\right) z=\cos (2 x+y)$.
b) Solve $p+q=\sin x+$ siny .
12. a) Solve by Charpit's method $z=p q$.
b) Solve $\left(D^{2}+D D^{\prime}+D^{\prime}-1\right) z=\sin (x+2 y)$.

OR
13. a) A tightly stretched string with fixed end points $x=0$ and $x=1$ is initially in a position given by $y=y_{0} \sin ^{3}\left(\frac{\pi x}{1}\right)$. If it is released from rest to this position, find the displacement $y(x, t)$.
b) Solve $\frac{\partial u}{\partial t}=16 \frac{\partial^{2} u}{\partial x^{2}}$ subjected to the conditions
i) $u(0, t)=0, u(1, t)=0$
ii) $u(x, 0) \neq x^{2}-x, 0 \leq x \leq 1$.

