UG - 179

37 VI Semester B.Sc. Examination, September/October 2022 (CBCS) (F+R) (2019 – 20 and Onwards) STATISTICS – VIII Operations Research

Time : 3 Hours

Max. Marks: 70

 $(5 \times 5 = 25)$

ngalos

Instructions : i) Answer any five questions from Section A and any five questions from Section B.

ii) Scientific calculators are permitted

SECTION - A

- I. Answer any five questions.
 - 1) Define Operations Research (OR). Mention its scope.
 - 2) What is Linear Programming Problem (LPP) ? State the characteristics of LPP.
 - 3) Explain Vogel's Approximation Method (VAM) of finding IBFS of a TP.
 - 4) What is a game ? Explain Maximin-Minimax principle of solving a game problem.
 - 5) Define the following terms with respect to an inventory :
 - i) Demand
 - ii) Lead time
 - iii) Stoch replenishment
 - iv) Re-order level
 - v) Purchase or production cost
 - 6) Derive an optimum replacement policy when time is a discrete variable.
 - 7) Define a queueing problem. Distinguish between steady state and transient state of queueing system.
 - 8) Explain the queueing model (M/M/1) : (∞/FIFO). Also write down the expressions for average expected waiting time of a customer in the system and in the queue.

P.T.O.

UG – 179

SECTION - B

II. Answer any	five questions. (5×9	9=45)
9) a) What mode	is operations research model ? Describe various types of Ofels.	7
b) Expla	in the graphical method of solving a LPP.	(4+5)
10) a) Expla	in basic variable, non-basic variable and unbasic variable.	
i) Opt ii) Ent iii) Lea iv) Unt v) Mul	in the criteria for the following : imality test ering variable wing variable bounded solution tiple solution easible solution.	(3+6)
11) a) Expla	in the Big-M method of finding solution to a LPP.	
Maxir	the dual for the following LPP : mize $z = 10x + 12y$ ect to the constraints : $2x + 3y \le 7$ $x + 10y \ge 8$ and $(x, y) \ge 0$.	(5+4)
12) a) Give	the mathematical formulation of Assignment Problem (AP).	
b) Expla	in the MODI method of finding an optimal solution to a TP.	(3+6)
13) a) Expla	in North-West Corner method of finding IBFS to a TP.	
b) Expla	in Hungarian's method of solving an Assignment Problem (AP).	(4+5)
	e expressions for an optimal mixed strategies of a (2×2) game em without a saddle point.	e
b) Expla	in dominance rule in a game problem.	(5+4)
15) a) Obtai	n the expression for EOQ in an inventory model without shortag	es.
b) Expla	in individual and group replacement policies.	(5+4)