VI Semester B.Sc. Examination, September/October 2022 (CBCS) ($\mathrm{F}+\mathrm{R}$) (2019-20 and Onwards) STATISTICS - VIII
 Operations Research

Time : 3 Hours
Max. Marks : 70

Instructions : i) Answer any five questions from Section \boldsymbol{A} and any five questions from Section B.

ii) Scientific calculators are permitted

SECTION - A
I. Answer any five questions.

1) Define Operations Research (OR). Mention its scope.
2) What is Linear Programming Problem (LPP) ? State the characteristics of LPP.
3) Explain Vogel's Approximation Method (VAM) of finding IBFS of a TP.
4) What is a game ? Explain Maximin-Minimax principle of solving a game problem.
5) Define the following terms with respect to an inventory :
i) Demand
ii) Lead time
iii) Stoch replenishment
iv) Re-order level
v) Purchase or production cost
6) Derive an optimum replacement policy when time is a discrete variable.
7) Define a queueing problem. Distinguish between steady state and transient state of queueing system.
8) Explain the queueing model (M/M/1) : ($\infty /$ FIFO). Also write down the expressions for average expected waiting time of a customer in the system and in the queue.

SECTION - B

II. Answer any five questions.
9) a) What is operations research model ? Describe various types of OR models.
b) Explain the graphical method of solving a LPP.
10) a) Explain basic variable, non-basic variable and unbasic variable.
b) Explain the criteria for the following :
i) Optimality test
ii) Entering variable
iii) Leaving variable
iv) Unbounded solution
v) Multiple solution
vi) Infeasible solution.
11) a) Explain the Big-M method of finding solution to a LPP.
b) Write the dual for the following LPP :

Maximize $z=10 x+12 y$
Subject to the constraints :
$2 x+3 y \leq 7$
$x+10 y \geq 8$
and $(x, y) \geq 0$.
12) a) Give the mathematical formulation of Assignment Problem (AP).
b) Explain the MODI method of finding an optimal solution to a TP.
13) a) Explain North-West Corner method of finding IBFS to a TP.
b) Explain Hungarian's method of solving an Assignment Problem (AP). (4+5)
14) a) Derive expressions for an optimal mixed strategies of a (2×2) game problem without a saddle point.
b) Explain dominance rule in a game problem.
15) a) Obtain the expression for EOQ in an inventory model without shortages.
b) Explain individual and group replacement policies.

